This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmeqker.b | |- B = ( Base ` S ) |
|
| ghmeqker.z | |- .0. = ( 0g ` T ) |
||
| ghmeqker.k | |- K = ( `' F " { .0. } ) |
||
| ghmeqker.m | |- .- = ( -g ` S ) |
||
| Assertion | ghmeqker | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) = ( F ` V ) <-> ( U .- V ) e. K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmeqker.b | |- B = ( Base ` S ) |
|
| 2 | ghmeqker.z | |- .0. = ( 0g ` T ) |
|
| 3 | ghmeqker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | ghmeqker.m | |- .- = ( -g ` S ) |
|
| 5 | 2 | sneqi | |- { .0. } = { ( 0g ` T ) } |
| 6 | 5 | imaeq2i | |- ( `' F " { .0. } ) = ( `' F " { ( 0g ` T ) } ) |
| 7 | 3 6 | eqtri | |- K = ( `' F " { ( 0g ` T ) } ) |
| 8 | 7 | eleq2i | |- ( ( U .- V ) e. K <-> ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) ) |
| 9 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 10 | 1 9 | ghmf | |- ( F e. ( S GrpHom T ) -> F : B --> ( Base ` T ) ) |
| 11 | 10 | ffnd | |- ( F e. ( S GrpHom T ) -> F Fn B ) |
| 12 | 11 | 3ad2ant1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> F Fn B ) |
| 13 | fniniseg | |- ( F Fn B -> ( ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( U .- V ) e. ( `' F " { ( 0g ` T ) } ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
| 15 | 8 14 | bitrid | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( U .- V ) e. K <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
| 16 | ghmgrp1 | |- ( F e. ( S GrpHom T ) -> S e. Grp ) |
|
| 17 | 1 4 | grpsubcl | |- ( ( S e. Grp /\ U e. B /\ V e. B ) -> ( U .- V ) e. B ) |
| 18 | 16 17 | syl3an1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( U .- V ) e. B ) |
| 19 | 18 | biantrurd | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` ( U .- V ) ) = ( 0g ` T ) <-> ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) ) ) |
| 20 | eqid | |- ( -g ` T ) = ( -g ` T ) |
|
| 21 | 1 4 20 | ghmsub | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` ( U .- V ) ) = ( ( F ` U ) ( -g ` T ) ( F ` V ) ) ) |
| 22 | 21 | eqeq1d | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` ( U .- V ) ) = ( 0g ` T ) <-> ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) ) ) |
| 23 | 19 22 | bitr3d | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( ( U .- V ) e. B /\ ( F ` ( U .- V ) ) = ( 0g ` T ) ) <-> ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) ) ) |
| 24 | ghmgrp2 | |- ( F e. ( S GrpHom T ) -> T e. Grp ) |
|
| 25 | 24 | 3ad2ant1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> T e. Grp ) |
| 26 | 10 | 3ad2ant1 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> F : B --> ( Base ` T ) ) |
| 27 | simp2 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> U e. B ) |
|
| 28 | 26 27 | ffvelcdmd | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` U ) e. ( Base ` T ) ) |
| 29 | simp3 | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> V e. B ) |
|
| 30 | 26 29 | ffvelcdmd | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( F ` V ) e. ( Base ` T ) ) |
| 31 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 32 | 9 31 20 | grpsubeq0 | |- ( ( T e. Grp /\ ( F ` U ) e. ( Base ` T ) /\ ( F ` V ) e. ( Base ` T ) ) -> ( ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) <-> ( F ` U ) = ( F ` V ) ) ) |
| 33 | 25 28 30 32 | syl3anc | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( ( F ` U ) ( -g ` T ) ( F ` V ) ) = ( 0g ` T ) <-> ( F ` U ) = ( F ` V ) ) ) |
| 34 | 15 23 33 | 3bitrrd | |- ( ( F e. ( S GrpHom T ) /\ U e. B /\ V e. B ) -> ( ( F ` U ) = ( F ` V ) <-> ( U .- V ) e. K ) ) |