This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of reciprocals 1 + ( 1 / A ) ^ 1 + ( 1 / A ) ^ 2 ... is A / ( A - 1 ) . (Contributed by rpenner, 3-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisumr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → Σ 𝑘 ∈ ℕ0 ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 2 | 0zd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 0 ∈ ℤ ) | |
| 3 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝐴 ) ↑ 𝑛 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) | |
| 4 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) | |
| 5 | ovex | ⊢ ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 8 | 0le1 | ⊢ 0 ≤ 1 | |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 9 10 | lenlti | ⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
| 12 | 8 11 | mpbi | ⊢ ¬ 1 < 0 |
| 13 | fveq2 | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) | |
| 14 | abs0 | ⊢ ( abs ‘ 0 ) = 0 | |
| 15 | 13 14 | eqtrdi | ⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 16 | 15 | breq2d | ⊢ ( 𝐴 = 0 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 0 ) ) |
| 17 | 12 16 | mtbiri | ⊢ ( 𝐴 = 0 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
| 18 | 17 | necon2ai | ⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 0 ) |
| 19 | reccl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) | |
| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → ( 1 / 𝐴 ) ∈ ℂ ) |
| 21 | expcl | ⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) | |
| 22 | 20 21 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
| 23 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 24 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 1 < ( abs ‘ 𝐴 ) ) | |
| 25 | 23 24 7 | georeclim | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| 26 | 1 2 7 22 25 | isumclim | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → Σ 𝑘 ∈ ℕ0 ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |