This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of reciprocals 1 + ( 1 / A ) ^ 1 + ( 1 / A ) ^ 2 ... is A / ( A - 1 ) . (Contributed by rpenner, 3-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisumr | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> sum_ k e. NN0 ( ( 1 / A ) ^ k ) = ( A / ( A - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 2 | 0zd | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 0 e. ZZ ) |
|
| 3 | oveq2 | |- ( n = k -> ( ( 1 / A ) ^ n ) = ( ( 1 / A ) ^ k ) ) |
|
| 4 | eqid | |- ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) |
|
| 5 | ovex | |- ( ( 1 / A ) ^ k ) e. _V |
|
| 6 | 3 4 5 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) |
| 7 | 6 | adantl | |- ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) |
| 8 | 0le1 | |- 0 <_ 1 |
|
| 9 | 0re | |- 0 e. RR |
|
| 10 | 1re | |- 1 e. RR |
|
| 11 | 9 10 | lenlti | |- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 12 | 8 11 | mpbi | |- -. 1 < 0 |
| 13 | fveq2 | |- ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) |
|
| 14 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 15 | 13 14 | eqtrdi | |- ( A = 0 -> ( abs ` A ) = 0 ) |
| 16 | 15 | breq2d | |- ( A = 0 -> ( 1 < ( abs ` A ) <-> 1 < 0 ) ) |
| 17 | 12 16 | mtbiri | |- ( A = 0 -> -. 1 < ( abs ` A ) ) |
| 18 | 17 | necon2ai | |- ( 1 < ( abs ` A ) -> A =/= 0 ) |
| 19 | reccl | |- ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) |
|
| 20 | 18 19 | sylan2 | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> ( 1 / A ) e. CC ) |
| 21 | expcl | |- ( ( ( 1 / A ) e. CC /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) |
|
| 22 | 20 21 | sylan | |- ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) |
| 23 | simpl | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> A e. CC ) |
|
| 24 | simpr | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 1 < ( abs ` A ) ) |
|
| 25 | 23 24 7 | georeclim | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ) ~~> ( A / ( A - 1 ) ) ) |
| 26 | 1 2 7 22 25 | isumclim | |- ( ( A e. CC /\ 1 < ( abs ` A ) ) -> sum_ k e. NN0 ( ( 1 / A ) ^ k ) = ( A / ( A - 1 ) ) ) |