This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinite sum of A ^ 1 + A ^ 2 ... is ( A / ( 1 - A ) ) . (Contributed by NM, 1-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoisum1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 ↑ 𝑘 ) = ( 𝐴 / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 2 | 1zzd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) | |
| 3 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 4 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) | |
| 5 | ovex | ⊢ ( 𝐴 ↑ 𝑘 ) ∈ V | |
| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) | |
| 9 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 10 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 11 | 8 9 10 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 12 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) | |
| 13 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 14 | 13 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℕ0 ) |
| 15 | elnnuz | ⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 16 | 15 7 | sylan2br | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
| 17 | 8 12 14 16 | geolim2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) ) |
| 18 | 1 2 7 11 17 | isumclim | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 ↑ 𝑘 ) = ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) ) |
| 19 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) = ( 𝐴 / ( 1 − 𝐴 ) ) ) |
| 22 | 18 21 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 ↑ 𝑘 ) = ( 𝐴 / ( 1 − 𝐴 ) ) ) |