This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoihalfsum |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | ||
| 2 | 1 | a1i | |
| 3 | 2ne0 | ||
| 4 | 3 | a1i | |
| 5 | nnz | ||
| 6 | 2 4 5 | exprecd | |
| 7 | 6 | sumeq2i | |
| 8 | halfcn | ||
| 9 | halfre | ||
| 10 | halfge0 | ||
| 11 | absid | ||
| 12 | 9 10 11 | mp2an | |
| 13 | halflt1 | ||
| 14 | 12 13 | eqbrtri | |
| 15 | geoisum1 | ||
| 16 | 8 14 15 | mp2an | |
| 17 | 1mhlfehlf | ||
| 18 | 17 | oveq2i | |
| 19 | ax-1cn | ||
| 20 | ax-1ne0 | ||
| 21 | 19 1 20 3 | divne0i | |
| 22 | 8 21 | dividi | |
| 23 | 16 18 22 | 3eqtri | |
| 24 | 7 23 | eqtr3i |