This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 . This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geoihalfsum | |- sum_ k e. NN ( 1 / ( 2 ^ k ) ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn | |- 2 e. CC |
|
| 2 | 1 | a1i | |- ( k e. NN -> 2 e. CC ) |
| 3 | 2ne0 | |- 2 =/= 0 |
|
| 4 | 3 | a1i | |- ( k e. NN -> 2 =/= 0 ) |
| 5 | nnz | |- ( k e. NN -> k e. ZZ ) |
|
| 6 | 2 4 5 | exprecd | |- ( k e. NN -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) |
| 7 | 6 | sumeq2i | |- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = sum_ k e. NN ( 1 / ( 2 ^ k ) ) |
| 8 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 9 | halfre | |- ( 1 / 2 ) e. RR |
|
| 10 | halfge0 | |- 0 <_ ( 1 / 2 ) |
|
| 11 | absid | |- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
|
| 12 | 9 10 11 | mp2an | |- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
| 13 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 14 | 12 13 | eqbrtri | |- ( abs ` ( 1 / 2 ) ) < 1 |
| 15 | geoisum1 | |- ( ( ( 1 / 2 ) e. CC /\ ( abs ` ( 1 / 2 ) ) < 1 ) -> sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) ) |
|
| 16 | 8 14 15 | mp2an | |- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) |
| 17 | 1mhlfehlf | |- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
|
| 18 | 17 | oveq2i | |- ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 1 / 2 ) / ( 1 / 2 ) ) |
| 19 | ax-1cn | |- 1 e. CC |
|
| 20 | ax-1ne0 | |- 1 =/= 0 |
|
| 21 | 19 1 20 3 | divne0i | |- ( 1 / 2 ) =/= 0 |
| 22 | 8 21 | dividi | |- ( ( 1 / 2 ) / ( 1 / 2 ) ) = 1 |
| 23 | 16 18 22 | 3eqtri | |- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = 1 |
| 24 | 7 23 | eqtr3i | |- sum_ k e. NN ( 1 / ( 2 ^ k ) ) = 1 |