This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | ||
| Assertion | genpv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genp.1 | ⊢ 𝐹 = ( 𝑤 ∈ P , 𝑣 ∈ P ↦ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) | |
| 2 | genp.2 | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q ) | |
| 3 | oveq1 | ⊢ ( 𝑓 = 𝐴 → ( 𝑓 𝐹 𝑔 ) = ( 𝐴 𝐹 𝑔 ) ) | |
| 4 | rexeq | ⊢ ( 𝑓 = 𝐴 → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) | |
| 5 | 4 | abbidv | ⊢ ( 𝑓 = 𝐴 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑓 = 𝐴 → ( ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ↔ ( 𝐴 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) ) |
| 7 | oveq2 | ⊢ ( 𝑔 = 𝐵 → ( 𝐴 𝐹 𝑔 ) = ( 𝐴 𝐹 𝐵 ) ) | |
| 8 | rexeq | ⊢ ( 𝑔 = 𝐵 → ( ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝑔 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
| 10 | 9 | abbidv | ⊢ ( 𝑔 = 𝐵 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 11 | 7 10 | eqeq12d | ⊢ ( 𝑔 = 𝐵 → ( ( 𝐴 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ↔ ( 𝐴 𝐹 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) ) |
| 12 | elprnq | ⊢ ( ( 𝑓 ∈ P ∧ 𝑦 ∈ 𝑓 ) → 𝑦 ∈ Q ) | |
| 13 | elprnq | ⊢ ( ( 𝑔 ∈ P ∧ 𝑧 ∈ 𝑔 ) → 𝑧 ∈ Q ) | |
| 14 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → ( 𝑥 ∈ Q ↔ ( 𝑦 𝐺 𝑧 ) ∈ Q ) ) | |
| 15 | 2 14 | syl5ibrcom | ⊢ ( ( 𝑦 ∈ Q ∧ 𝑧 ∈ Q ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 16 | 12 13 15 | syl2an | ⊢ ( ( ( 𝑓 ∈ P ∧ 𝑦 ∈ 𝑓 ) ∧ ( 𝑔 ∈ P ∧ 𝑧 ∈ 𝑔 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 17 | 16 | an4s | ⊢ ( ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) ∧ ( 𝑦 ∈ 𝑓 ∧ 𝑧 ∈ 𝑔 ) ) → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 18 | 17 | rexlimdvva | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) → 𝑥 ∈ Q ) ) |
| 19 | 18 | abssdv | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ) |
| 20 | nqex | ⊢ Q ∈ V | |
| 21 | ssexg | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ⊆ Q ∧ Q ∈ V ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) |
| 23 | rexeq | ⊢ ( 𝑤 = 𝑓 → ( ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) | |
| 24 | 23 | abbidv | ⊢ ( 𝑤 = 𝑓 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑤 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 25 | rexeq | ⊢ ( 𝑣 = 𝑔 → ( ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) | |
| 26 | 25 | rexbidv | ⊢ ( 𝑣 = 𝑔 → ( ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) ) ) |
| 27 | 26 | abbidv | ⊢ ( 𝑣 = 𝑔 → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 28 | 24 27 1 | ovmpog | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ∧ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ∈ V ) → ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 29 | 22 28 | mpd3an3 | ⊢ ( ( 𝑓 ∈ P ∧ 𝑔 ∈ P ) → ( 𝑓 𝐹 𝑔 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝑓 ∃ 𝑧 ∈ 𝑔 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 30 | 6 11 29 | vtocl2ga | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } ) |
| 31 | eqeq1 | ⊢ ( 𝑥 = 𝑓 → ( 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑦 𝐺 𝑧 ) ) ) | |
| 32 | 31 | 2rexbidv | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑓 = ( 𝑦 𝐺 𝑧 ) ) ) |
| 33 | oveq1 | ⊢ ( 𝑦 = 𝑔 → ( 𝑦 𝐺 𝑧 ) = ( 𝑔 𝐺 𝑧 ) ) | |
| 34 | 33 | eqeq2d | ⊢ ( 𝑦 = 𝑔 → ( 𝑓 = ( 𝑦 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑔 𝐺 𝑧 ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑧 = ℎ → ( 𝑔 𝐺 𝑧 ) = ( 𝑔 𝐺 ℎ ) ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑧 = ℎ → ( 𝑓 = ( 𝑔 𝐺 𝑧 ) ↔ 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 37 | 34 36 | cbvrex2vw | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑓 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) |
| 38 | 32 37 | bitrdi | ⊢ ( 𝑥 = 𝑓 → ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) ↔ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) ) ) |
| 39 | 38 | cbvabv | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 𝐺 𝑧 ) } = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } |
| 40 | 30 39 | eqtrdi | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 𝐹 𝐵 ) = { 𝑓 ∣ ∃ 𝑔 ∈ 𝐴 ∃ ℎ ∈ 𝐵 𝑓 = ( 𝑔 𝐺 ℎ ) } ) |