This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer A is equal to its gcd with an integer B if and only if A divides B . Generalization of gcdeq . (Contributed by AV, 1-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdzeq | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> A || B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 2 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 4 | 3 | simprd | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || B ) |
| 5 | breq1 | |- ( ( A gcd B ) = A -> ( ( A gcd B ) || B <-> A || B ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A -> A || B ) ) |
| 7 | 1 | adantr | |- ( ( A e. NN /\ B e. ZZ ) -> A e. ZZ ) |
| 8 | iddvds | |- ( A e. ZZ -> A || A ) |
|
| 9 | 7 8 | syl | |- ( ( A e. NN /\ B e. ZZ ) -> A || A ) |
| 10 | simpr | |- ( ( A e. NN /\ B e. ZZ ) -> B e. ZZ ) |
|
| 11 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 12 | simpl | |- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
|
| 13 | 12 | necon3ai | |- ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
| 14 | 11 13 | syl | |- ( A e. NN -> -. ( A = 0 /\ B = 0 ) ) |
| 15 | 14 | adantr | |- ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) |
| 16 | dvdslegcd | |- ( ( ( A e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
|
| 17 | 7 7 10 15 16 | syl31anc | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
| 18 | 9 17 | mpand | |- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> A <_ ( A gcd B ) ) ) |
| 19 | 3 | simpld | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) |
| 20 | gcdcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
|
| 21 | 1 20 | sylan | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
| 22 | 21 | nn0zd | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
| 23 | simpl | |- ( ( A e. NN /\ B e. ZZ ) -> A e. NN ) |
|
| 24 | dvdsle | |- ( ( ( A gcd B ) e. ZZ /\ A e. NN ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
| 26 | 19 25 | mpd | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) <_ A ) |
| 27 | 18 26 | jctild | |- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
| 28 | 21 | nn0red | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. RR ) |
| 29 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 30 | 29 | adantr | |- ( ( A e. NN /\ B e. ZZ ) -> A e. RR ) |
| 31 | 28 30 | letri3d | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
| 32 | 27 31 | sylibrd | |- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( A gcd B ) = A ) ) |
| 33 | 6 32 | impbid | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> A || B ) ) |