This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdneg | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd 𝑁 ) = ( 0 gcd 0 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 0 gcd 0 ) ) |
| 3 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 4 | 3 | negeq0d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) ) ) |
| 7 | oveq12 | ⊢ ( ( 𝑀 = 0 ∧ - 𝑁 = 0 ) → ( 𝑀 gcd - 𝑁 ) = ( 0 gcd 0 ) ) | |
| 8 | 6 7 | biimtrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( 𝑀 gcd - 𝑁 ) = ( 0 gcd 0 ) ) ) |
| 9 | 8 | imp | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd - 𝑁 ) = ( 0 gcd 0 ) ) |
| 10 | 2 9 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd - 𝑁 ) ) |
| 11 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 12 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 13 | 12 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 14 | dvdsnegb | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) ) | |
| 15 | 13 14 | sylancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) ) |
| 16 | 15 | anbi2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) ) ) |
| 17 | 11 16 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) ) |
| 18 | 6 | notbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ ¬ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) ) ) |
| 19 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 20 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → - 𝑁 ∈ ℤ ) |
| 22 | dvdslegcd | ⊢ ( ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) | |
| 23 | 22 | ex | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) ) |
| 24 | 13 19 21 23 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ - 𝑁 = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) ) |
| 25 | 18 24 | sylbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) ) |
| 26 | 25 | com12 | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ - 𝑁 ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) ) |
| 27 | 17 26 | mpdi | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) ) |
| 28 | 27 | impcom | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ) |
| 29 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ - 𝑁 ) ) | |
| 30 | 20 29 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ - 𝑁 ) ) |
| 31 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) ∈ ℕ0 ) | |
| 32 | 31 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) ∈ ℤ ) |
| 33 | 20 32 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) ∈ ℤ ) |
| 34 | dvdsnegb | ⊢ ( ( ( 𝑀 gcd - 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd - 𝑁 ) ∥ - 𝑁 ) ) | |
| 35 | 33 34 | sylancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ↔ ( 𝑀 gcd - 𝑁 ) ∥ - 𝑁 ) ) |
| 36 | 35 | anbi2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) ↔ ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ - 𝑁 ) ) ) |
| 37 | 30 36 | mpbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) ) |
| 38 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 39 | dvdslegcd | ⊢ ( ( ( ( 𝑀 gcd - 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) | |
| 40 | 39 | ex | ⊢ ( ( ( 𝑀 gcd - 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 41 | 33 19 38 40 | syl3anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 42 | 41 | com12 | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑀 gcd - 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd - 𝑁 ) ∥ 𝑁 ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 43 | 37 42 | mpdi | ⊢ ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) |
| 44 | 43 | impcom | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) |
| 45 | 13 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) |
| 46 | 33 | zred | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) ∈ ℝ ) |
| 47 | 45 46 | letri3d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd - 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ∧ ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd - 𝑁 ) ↔ ( ( 𝑀 gcd 𝑁 ) ≤ ( 𝑀 gcd - 𝑁 ) ∧ ( 𝑀 gcd - 𝑁 ) ≤ ( 𝑀 gcd 𝑁 ) ) ) ) |
| 49 | 28 44 48 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd - 𝑁 ) ) |
| 50 | 10 49 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) = ( 𝑀 gcd - 𝑁 ) ) |
| 51 | 50 | eqcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd - 𝑁 ) = ( 𝑀 gcd 𝑁 ) ) |