This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdneg | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) = ( M gcd N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
|
| 2 | 1 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
| 3 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 4 | 3 | negeq0d | |- ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) |
| 5 | 4 | anbi2d | |- ( N e. ZZ -> ( ( M = 0 /\ N = 0 ) <-> ( M = 0 /\ -u N = 0 ) ) ) |
| 6 | 5 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 /\ N = 0 ) <-> ( M = 0 /\ -u N = 0 ) ) ) |
| 7 | oveq12 | |- ( ( M = 0 /\ -u N = 0 ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) |
|
| 8 | 6 7 | biimtrdi | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 /\ N = 0 ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) ) |
| 9 | 8 | imp | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) |
| 10 | 2 9 | eqtr4d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd -u N ) ) |
| 11 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 12 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 13 | 12 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 14 | dvdsnegb | |- ( ( ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( M gcd N ) || -u N ) ) |
|
| 15 | 13 14 | sylancom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( M gcd N ) || -u N ) ) |
| 16 | 15 | anbi2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) <-> ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) ) ) |
| 17 | 11 16 | mpbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) ) |
| 18 | 6 | notbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) <-> -. ( M = 0 /\ -u N = 0 ) ) ) |
| 19 | simpl | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 20 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 21 | 20 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> -u N e. ZZ ) |
| 22 | dvdslegcd | |- ( ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 /\ -u N = 0 ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) |
|
| 23 | 22 | ex | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 /\ -u N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
| 24 | 13 19 21 23 | syl3anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ -u N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
| 25 | 18 24 | sylbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
| 26 | 25 | com12 | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
| 27 | 17 26 | mpdi | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) |
| 28 | 27 | impcom | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) <_ ( M gcd -u N ) ) |
| 29 | gcddvds | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) |
|
| 30 | 20 29 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) |
| 31 | gcdcl | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M gcd -u N ) e. NN0 ) |
|
| 32 | 31 | nn0zd | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M gcd -u N ) e. ZZ ) |
| 33 | 20 32 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) e. ZZ ) |
| 34 | dvdsnegb | |- ( ( ( M gcd -u N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || N <-> ( M gcd -u N ) || -u N ) ) |
|
| 35 | 33 34 | sylancom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || N <-> ( M gcd -u N ) || -u N ) ) |
| 36 | 35 | anbi2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) <-> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) ) |
| 37 | 30 36 | mpbird | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) ) |
| 38 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 39 | dvdslegcd | |- ( ( ( ( M gcd -u N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) |
|
| 40 | 39 | ex | |- ( ( ( M gcd -u N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
| 41 | 33 19 38 40 | syl3anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
| 42 | 41 | com12 | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
| 43 | 37 42 | mpdi | |- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) |
| 44 | 43 | impcom | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd -u N ) <_ ( M gcd N ) ) |
| 45 | 13 | zred | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. RR ) |
| 46 | 33 | zred | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) e. RR ) |
| 47 | 45 46 | letri3d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = ( M gcd -u N ) <-> ( ( M gcd N ) <_ ( M gcd -u N ) /\ ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
| 48 | 47 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) = ( M gcd -u N ) <-> ( ( M gcd N ) <_ ( M gcd -u N ) /\ ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
| 49 | 28 44 48 | mpbir2and | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd -u N ) ) |
| 50 | 10 49 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd -u N ) ) |
| 51 | 50 | eqcomd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) = ( M gcd N ) ) |