This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gcdn0cl , gcddvds and dvdslegcd . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcllem2.1 | |- S = { z e. ZZ | A. n e. { M , N } z || n } |
|
| gcdcllem2.2 | |- R = { z e. ZZ | ( z || M /\ z || N ) } |
||
| Assertion | gcdcllem2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> R = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcllem2.1 | |- S = { z e. ZZ | A. n e. { M , N } z || n } |
|
| 2 | gcdcllem2.2 | |- R = { z e. ZZ | ( z || M /\ z || N ) } |
|
| 3 | breq1 | |- ( z = x -> ( z || M <-> x || M ) ) |
|
| 4 | breq1 | |- ( z = x -> ( z || N <-> x || N ) ) |
|
| 5 | 3 4 | anbi12d | |- ( z = x -> ( ( z || M /\ z || N ) <-> ( x || M /\ x || N ) ) ) |
| 6 | 5 2 | elrab2 | |- ( x e. R <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) |
| 7 | breq1 | |- ( z = x -> ( z || n <-> x || n ) ) |
|
| 8 | 7 | ralbidv | |- ( z = x -> ( A. n e. { M , N } z || n <-> A. n e. { M , N } x || n ) ) |
| 9 | 8 1 | elrab2 | |- ( x e. S <-> ( x e. ZZ /\ A. n e. { M , N } x || n ) ) |
| 10 | breq2 | |- ( n = M -> ( x || n <-> x || M ) ) |
|
| 11 | breq2 | |- ( n = N -> ( x || n <-> x || N ) ) |
|
| 12 | 10 11 | ralprg | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( A. n e. { M , N } x || n <-> ( x || M /\ x || N ) ) ) |
| 13 | 12 | anbi2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( x e. ZZ /\ A. n e. { M , N } x || n ) <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) ) |
| 14 | 9 13 | bitrid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( x e. S <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) ) |
| 15 | 6 14 | bitr4id | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( x e. R <-> x e. S ) ) |
| 16 | 15 | eqrdv | |- ( ( M e. ZZ /\ N e. ZZ ) -> R = S ) |