This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gasubg.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| Assertion | gasubg | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ∈ ( 𝐻 GrpAct 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasubg.1 | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
| 2 | gaset | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → 𝑌 ∈ V ) | |
| 3 | 1 | subggrp | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 4 | 2 3 | anim12ci | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐻 ∈ Grp ∧ 𝑌 ∈ V ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 7 | 6 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 8 | simpr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 9 | 5 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 8 9 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | xpss1 | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) → ( 𝑆 × 𝑌 ) ⊆ ( ( Base ‘ 𝐺 ) × 𝑌 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑌 ) ⊆ ( ( Base ‘ 𝐺 ) × 𝑌 ) ) |
| 13 | 7 12 | fssresd | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( 𝑆 × 𝑌 ) ⟶ 𝑌 ) |
| 14 | 1 | subgbas | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 15 | 8 14 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 16 | 15 | xpeq1d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑌 ) = ( ( Base ‘ 𝐻 ) × 𝑌 ) ) |
| 17 | 16 | feq2d | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( 𝑆 × 𝑌 ) ⟶ 𝑌 ↔ ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ) ) |
| 18 | 13 17 | mpbid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ) |
| 19 | 8 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 21 | 20 | subg0cl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 22 | 19 21 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
| 23 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑌 ) | |
| 24 | ovres | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) ) |
| 26 | 1 20 | subg0 | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 27 | 19 26 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
| 28 | 27 | oveq1d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) |
| 29 | 20 | gagrpid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
| 30 | 29 | adantlr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐺 ) ⊕ 𝑥 ) = 𝑥 ) |
| 31 | 25 28 30 | 3eqtr3d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ) |
| 32 | eqimss2 | ⊢ ( 𝑆 = ( Base ‘ 𝐻 ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) | |
| 33 | 15 32 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) |
| 34 | 33 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( Base ‘ 𝐻 ) ⊆ 𝑆 ) |
| 35 | 34 | sselda | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → 𝑦 ∈ 𝑆 ) |
| 36 | 34 | sselda | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) → 𝑧 ∈ 𝑆 ) |
| 37 | 35 36 | anim12dan | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) |
| 38 | simprl | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 39 | 7 | ad2antrr | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ⊕ : ( ( Base ‘ 𝐺 ) × 𝑌 ) ⟶ 𝑌 ) |
| 40 | 9 | ad3antlr | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 41 | simprr | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) | |
| 42 | 40 41 | sseldd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 43 | 23 | adantr | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑌 ) |
| 44 | 39 42 43 | fovcdmd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ⊕ 𝑥 ) ∈ 𝑌 ) |
| 45 | ovres | ⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( 𝑧 ⊕ 𝑥 ) ∈ 𝑌 ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) | |
| 46 | 38 44 45 | syl2anc | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 47 | ovres | ⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑧 ⊕ 𝑥 ) ) | |
| 48 | 41 43 47 | syl2anc | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑧 ⊕ 𝑥 ) ) |
| 49 | 48 | oveq2d | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ⊕ 𝑥 ) ) ) |
| 50 | simplll | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 51 | 40 38 | sseldd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 52 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 53 | 5 52 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑌 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 54 | 50 51 42 43 53 | syl13anc | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) = ( 𝑦 ⊕ ( 𝑧 ⊕ 𝑥 ) ) ) |
| 55 | 46 49 54 | 3eqtr4d | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) |
| 56 | 52 | subgcl | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 57 | 56 | 3expb | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 58 | 19 57 | sylan | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 59 | ovres | ⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) | |
| 60 | 58 43 59 | syl2anc | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ⊕ 𝑥 ) ) |
| 61 | 1 52 | ressplusg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 62 | 61 | ad3antlr | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 63 | 62 | oveqd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ) |
| 64 | 63 | oveq1d | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) |
| 65 | 55 60 64 | 3eqtr2rd | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 66 | 37 65 | syldan | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐻 ) ∧ 𝑧 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 67 | 66 | ralrimivva | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) |
| 68 | 31 67 | jca | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) |
| 69 | 68 | ralrimiva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) |
| 70 | 18 69 | jca | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) ) |
| 71 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 72 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 73 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 74 | 71 72 73 | isga | ⊢ ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ∈ ( 𝐻 GrpAct 𝑌 ) ↔ ( ( 𝐻 ∈ Grp ∧ 𝑌 ∈ V ) ∧ ( ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) : ( ( Base ‘ 𝐻 ) × 𝑌 ) ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑌 ( ( ( 0g ‘ 𝐻 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ∀ 𝑧 ∈ ( Base ‘ 𝐻 ) ( ( 𝑦 ( +g ‘ 𝐻 ) 𝑧 ) ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) = ( 𝑦 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ( 𝑧 ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) 𝑥 ) ) ) ) ) ) |
| 75 | 4 70 74 | sylanbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ⊕ ↾ ( 𝑆 × 𝑌 ) ) ∈ ( 𝐻 GrpAct 𝑌 ) ) |