This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | gaid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ∈ ( 𝐺 GrpAct 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaid.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 3 | 2 | anim2i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ) |
| 4 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 5 | 1 4 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 7 | ovres | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) ) | |
| 8 | df-ov | ⊢ ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) = ( 2nd ‘ 〈 ( 0g ‘ 𝐺 ) , 𝑥 〉 ) | |
| 9 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 9 10 | op2nd | ⊢ ( 2nd ‘ 〈 ( 0g ‘ 𝐺 ) , 𝑥 〉 ) = 𝑥 |
| 12 | 8 11 | eqtri | ⊢ ( ( 0g ‘ 𝐺 ) 2nd 𝑥 ) = 𝑥 |
| 13 | 7 12 | eqtrdi | ⊢ ( ( ( 0g ‘ 𝐺 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 14 | 6 13 | sylan | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 15 | simprl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 16 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑆 ) | |
| 17 | ovres | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 2nd 𝑥 ) ) | |
| 18 | df-ov | ⊢ ( 𝑦 2nd 𝑥 ) = ( 2nd ‘ 〈 𝑦 , 𝑥 〉 ) | |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 19 10 | op2nd | ⊢ ( 2nd ‘ 〈 𝑦 , 𝑥 〉 ) = 𝑥 |
| 21 | 18 20 | eqtri | ⊢ ( 𝑦 2nd 𝑥 ) = 𝑥 |
| 22 | 17 21 | eqtrdi | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 23 | 15 16 22 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 24 | simprr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 25 | ovres | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑧 2nd 𝑥 ) ) | |
| 26 | df-ov | ⊢ ( 𝑧 2nd 𝑥 ) = ( 2nd ‘ 〈 𝑧 , 𝑥 〉 ) | |
| 27 | vex | ⊢ 𝑧 ∈ V | |
| 28 | 27 10 | op2nd | ⊢ ( 2nd ‘ 〈 𝑧 , 𝑥 〉 ) = 𝑥 |
| 29 | 26 28 | eqtri | ⊢ ( 𝑧 2nd 𝑥 ) = 𝑥 |
| 30 | 25 29 | eqtrdi | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 31 | 24 16 30 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 32 | 31 | oveq2d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) |
| 33 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 34 | 1 33 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 35 | 34 | 3expb | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 36 | 35 | ad4ant14 | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 37 | ovres | ⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) ) | |
| 38 | df-ov | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) = ( 2nd ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) , 𝑥 〉 ) | |
| 39 | ovex | ⊢ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ V | |
| 40 | 39 10 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) , 𝑥 〉 ) = 𝑥 |
| 41 | 38 40 | eqtri | ⊢ ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) 2nd 𝑥 ) = 𝑥 |
| 42 | 37 41 | eqtrdi | ⊢ ( ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 43 | 36 16 42 | syl2anc | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ) |
| 44 | 23 32 43 | 3eqtr4rd | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) |
| 45 | 44 | ralrimivva | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) |
| 46 | 14 45 | jca | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) |
| 47 | 46 | ralrimiva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) |
| 48 | f2ndres | ⊢ ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 | |
| 49 | 47 48 | jctil | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) ) |
| 50 | 1 33 4 | isga | ⊢ ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ∈ ( 𝐺 GrpAct 𝑆 ) ↔ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ V ) ∧ ( ( 2nd ↾ ( 𝑋 × 𝑆 ) ) : ( 𝑋 × 𝑆 ) ⟶ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( 0g ‘ 𝐺 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) = ( 𝑦 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ( 𝑧 ( 2nd ↾ ( 𝑋 × 𝑆 ) ) 𝑥 ) ) ) ) ) ) |
| 51 | 3 49 50 | sylanbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉 ) → ( 2nd ↾ ( 𝑋 × 𝑆 ) ) ∈ ( 𝐺 GrpAct 𝑆 ) ) |