This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009) (Proof shortened by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaid.1 | |- X = ( Base ` G ) |
|
| Assertion | gaid | |- ( ( G e. Grp /\ S e. V ) -> ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaid.1 | |- X = ( Base ` G ) |
|
| 2 | elex | |- ( S e. V -> S e. _V ) |
|
| 3 | 2 | anim2i | |- ( ( G e. Grp /\ S e. V ) -> ( G e. Grp /\ S e. _V ) ) |
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | 1 4 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 6 | 5 | adantr | |- ( ( G e. Grp /\ S e. V ) -> ( 0g ` G ) e. X ) |
| 7 | ovres | |- ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = ( ( 0g ` G ) 2nd x ) ) |
|
| 8 | df-ov | |- ( ( 0g ` G ) 2nd x ) = ( 2nd ` <. ( 0g ` G ) , x >. ) |
|
| 9 | fvex | |- ( 0g ` G ) e. _V |
|
| 10 | vex | |- x e. _V |
|
| 11 | 9 10 | op2nd | |- ( 2nd ` <. ( 0g ` G ) , x >. ) = x |
| 12 | 8 11 | eqtri | |- ( ( 0g ` G ) 2nd x ) = x |
| 13 | 7 12 | eqtrdi | |- ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 14 | 6 13 | sylan | |- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 15 | simprl | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> y e. X ) |
|
| 16 | simplr | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> x e. S ) |
|
| 17 | ovres | |- ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = ( y 2nd x ) ) |
|
| 18 | df-ov | |- ( y 2nd x ) = ( 2nd ` <. y , x >. ) |
|
| 19 | vex | |- y e. _V |
|
| 20 | 19 10 | op2nd | |- ( 2nd ` <. y , x >. ) = x |
| 21 | 18 20 | eqtri | |- ( y 2nd x ) = x |
| 22 | 17 21 | eqtrdi | |- ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) |
| 23 | 15 16 22 | syl2anc | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) |
| 24 | simprr | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> z e. X ) |
|
| 25 | ovres | |- ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = ( z 2nd x ) ) |
|
| 26 | df-ov | |- ( z 2nd x ) = ( 2nd ` <. z , x >. ) |
|
| 27 | vex | |- z e. _V |
|
| 28 | 27 10 | op2nd | |- ( 2nd ` <. z , x >. ) = x |
| 29 | 26 28 | eqtri | |- ( z 2nd x ) = x |
| 30 | 25 29 | eqtrdi | |- ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) |
| 31 | 24 16 30 | syl2anc | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) |
| 32 | 31 | oveq2d | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) = ( y ( 2nd |` ( X X. S ) ) x ) ) |
| 33 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 34 | 1 33 | grpcl | |- ( ( G e. Grp /\ y e. X /\ z e. X ) -> ( y ( +g ` G ) z ) e. X ) |
| 35 | 34 | 3expb | |- ( ( G e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 36 | 35 | ad4ant14 | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
| 37 | ovres | |- ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( ( y ( +g ` G ) z ) 2nd x ) ) |
|
| 38 | df-ov | |- ( ( y ( +g ` G ) z ) 2nd x ) = ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) |
|
| 39 | ovex | |- ( y ( +g ` G ) z ) e. _V |
|
| 40 | 39 10 | op2nd | |- ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) = x |
| 41 | 38 40 | eqtri | |- ( ( y ( +g ` G ) z ) 2nd x ) = x |
| 42 | 37 41 | eqtrdi | |- ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 43 | 36 16 42 | syl2anc | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) |
| 44 | 23 32 43 | 3eqtr4rd | |- ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) |
| 45 | 44 | ralrimivva | |- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) |
| 46 | 14 45 | jca | |- ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) |
| 47 | 46 | ralrimiva | |- ( ( G e. Grp /\ S e. V ) -> A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) |
| 48 | f2ndres | |- ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S |
|
| 49 | 47 48 | jctil | |- ( ( G e. Grp /\ S e. V ) -> ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) |
| 50 | 1 33 4 | isga | |- ( ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) <-> ( ( G e. Grp /\ S e. _V ) /\ ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) ) |
| 51 | 3 49 50 | sylanbrc | |- ( ( G e. Grp /\ S e. V ) -> ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) ) |