This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzouzsplit | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐴 ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 2 | eluzelre | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ℝ ) | |
| 3 | lelttric | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝐵 ≤ 𝑥 ∨ 𝑥 < 𝐵 ) ) |
| 5 | 4 | orcomd | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥 ) ) |
| 6 | id | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 7 | eluzelz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 8 | elfzo2 | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵 ) ) | |
| 9 | df-3an | ⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ∧ 𝑥 < 𝐵 ) ↔ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑥 < 𝐵 ) ) | |
| 10 | 8 9 | bitri | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝑥 < 𝐵 ) ) |
| 11 | 10 | baib | ⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝐵 ∈ ℤ ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ 𝑥 < 𝐵 ) ) |
| 12 | 6 7 11 | syl2anr | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ↔ 𝑥 < 𝐵 ) ) |
| 13 | eluzelz | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ℤ ) | |
| 14 | eluz | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ 𝐵 ≤ 𝑥 ) ) | |
| 15 | 7 13 14 | syl2an | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ↔ 𝐵 ≤ 𝑥 ) ) |
| 16 | 12 15 | orbi12d | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 < 𝐵 ∨ 𝐵 ≤ 𝑥 ) ) ) |
| 17 | 5 16 | mpbird | ⊢ ( ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) ) |
| 19 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∨ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) | |
| 20 | 18 19 | imbitrrdi | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐴 ) ⊆ ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) |
| 22 | elfzouz | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 23 | 22 | ssriv | ⊢ ( 𝐴 ..^ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) |
| 24 | 23 | a1i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) |
| 25 | uzss | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐵 ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) | |
| 26 | 24 25 | unssd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 𝐴 ) ) |
| 27 | 21 26 | eqssd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ℤ≥ ‘ 𝐴 ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( ℤ≥ ‘ 𝐵 ) ) ) |