This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split an upper integer set into a half-open integer range and another upper integer set. (Contributed by Mario Carneiro, 21-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzouzsplit | |- ( B e. ( ZZ>= ` A ) -> ( ZZ>= ` A ) = ( ( A ..^ B ) u. ( ZZ>= ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelre | |- ( B e. ( ZZ>= ` A ) -> B e. RR ) |
|
| 2 | eluzelre | |- ( x e. ( ZZ>= ` A ) -> x e. RR ) |
|
| 3 | lelttric | |- ( ( B e. RR /\ x e. RR ) -> ( B <_ x \/ x < B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( B <_ x \/ x < B ) ) |
| 5 | 4 | orcomd | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( x < B \/ B <_ x ) ) |
| 6 | id | |- ( x e. ( ZZ>= ` A ) -> x e. ( ZZ>= ` A ) ) |
|
| 7 | eluzelz | |- ( B e. ( ZZ>= ` A ) -> B e. ZZ ) |
|
| 8 | elfzo2 | |- ( x e. ( A ..^ B ) <-> ( x e. ( ZZ>= ` A ) /\ B e. ZZ /\ x < B ) ) |
|
| 9 | df-3an | |- ( ( x e. ( ZZ>= ` A ) /\ B e. ZZ /\ x < B ) <-> ( ( x e. ( ZZ>= ` A ) /\ B e. ZZ ) /\ x < B ) ) |
|
| 10 | 8 9 | bitri | |- ( x e. ( A ..^ B ) <-> ( ( x e. ( ZZ>= ` A ) /\ B e. ZZ ) /\ x < B ) ) |
| 11 | 10 | baib | |- ( ( x e. ( ZZ>= ` A ) /\ B e. ZZ ) -> ( x e. ( A ..^ B ) <-> x < B ) ) |
| 12 | 6 7 11 | syl2anr | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( x e. ( A ..^ B ) <-> x < B ) ) |
| 13 | eluzelz | |- ( x e. ( ZZ>= ` A ) -> x e. ZZ ) |
|
| 14 | eluz | |- ( ( B e. ZZ /\ x e. ZZ ) -> ( x e. ( ZZ>= ` B ) <-> B <_ x ) ) |
|
| 15 | 7 13 14 | syl2an | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( x e. ( ZZ>= ` B ) <-> B <_ x ) ) |
| 16 | 12 15 | orbi12d | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( ( x e. ( A ..^ B ) \/ x e. ( ZZ>= ` B ) ) <-> ( x < B \/ B <_ x ) ) ) |
| 17 | 5 16 | mpbird | |- ( ( B e. ( ZZ>= ` A ) /\ x e. ( ZZ>= ` A ) ) -> ( x e. ( A ..^ B ) \/ x e. ( ZZ>= ` B ) ) ) |
| 18 | 17 | ex | |- ( B e. ( ZZ>= ` A ) -> ( x e. ( ZZ>= ` A ) -> ( x e. ( A ..^ B ) \/ x e. ( ZZ>= ` B ) ) ) ) |
| 19 | elun | |- ( x e. ( ( A ..^ B ) u. ( ZZ>= ` B ) ) <-> ( x e. ( A ..^ B ) \/ x e. ( ZZ>= ` B ) ) ) |
|
| 20 | 18 19 | imbitrrdi | |- ( B e. ( ZZ>= ` A ) -> ( x e. ( ZZ>= ` A ) -> x e. ( ( A ..^ B ) u. ( ZZ>= ` B ) ) ) ) |
| 21 | 20 | ssrdv | |- ( B e. ( ZZ>= ` A ) -> ( ZZ>= ` A ) C_ ( ( A ..^ B ) u. ( ZZ>= ` B ) ) ) |
| 22 | elfzouz | |- ( x e. ( A ..^ B ) -> x e. ( ZZ>= ` A ) ) |
|
| 23 | 22 | ssriv | |- ( A ..^ B ) C_ ( ZZ>= ` A ) |
| 24 | 23 | a1i | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ B ) C_ ( ZZ>= ` A ) ) |
| 25 | uzss | |- ( B e. ( ZZ>= ` A ) -> ( ZZ>= ` B ) C_ ( ZZ>= ` A ) ) |
|
| 26 | 24 25 | unssd | |- ( B e. ( ZZ>= ` A ) -> ( ( A ..^ B ) u. ( ZZ>= ` B ) ) C_ ( ZZ>= ` A ) ) |
| 27 | 21 26 | eqssd | |- ( B e. ( ZZ>= ` A ) -> ( ZZ>= ` A ) = ( ( A ..^ B ) u. ( ZZ>= ` B ) ) ) |