This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range does not overlap the upper integer range starting at the endpoint of the first range. (Contributed by Mario Carneiro, 21-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzouzdisj | ⊢ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 < 𝐵 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 3 | eluzel2 | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ∈ ℤ ) |
| 5 | 4 | zred | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 6 | eluzelre | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝑥 ∈ ℝ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝑥 ∈ ℝ ) |
| 8 | eluzle | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) → 𝐵 ≤ 𝑥 ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → 𝐵 ≤ 𝑥 ) |
| 10 | 5 7 9 | lensymd | ⊢ ( ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) → ¬ 𝑥 < 𝐵 ) |
| 11 | 2 10 | pm2.65i | ⊢ ¬ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) |
| 12 | elin | ⊢ ( 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝐵 ) ) ) | |
| 13 | 11 12 | mtbir | ⊢ ¬ 𝑥 ∈ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) |
| 14 | 13 | nel0 | ⊢ ( ( 𝐴 ..^ 𝐵 ) ∩ ( ℤ≥ ‘ 𝐵 ) ) = ∅ |