This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzosumm1.1 | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| fzosumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) | ||
| fzosumm1.3 | ⊢ ( 𝑘 = ( 𝑁 − 1 ) → 𝐴 = 𝐵 ) | ||
| fzosumm1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| Assertion | fzosumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosumm1.1 | ⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | fzosumm1.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 3 | fzosumm1.3 | ⊢ ( 𝑘 = ( 𝑁 − 1 ) → 𝐴 = 𝐵 ) | |
| 4 | fzosumm1.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 7 | 6 | eqcomd | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) = ( 𝑀 ..^ 𝑁 ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| 10 | 9 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 11 | 1 10 3 | fsumm1 | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) − 1 ) ) 𝐴 + 𝐵 ) ) |
| 12 | 6 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ) |
| 13 | eluzelz | ⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 14 | fzoval | ⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑀 ..^ ( 𝑁 − 1 ) ) = ( 𝑀 ... ( ( 𝑁 − 1 ) − 1 ) ) ) | |
| 15 | 1 13 14 | 3syl | ⊢ ( 𝜑 → ( 𝑀 ..^ ( 𝑁 − 1 ) ) = ( 𝑀 ... ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 16 | 15 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) − 1 ) ) 𝐴 ) |
| 17 | 16 | oveq1d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 − 1 ) − 1 ) ) 𝐴 + 𝐵 ) ) |
| 18 | 11 12 17 | 3eqtr4d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ..^ ( 𝑁 − 1 ) ) 𝐴 + 𝐵 ) ) |