This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccatcan2d.a | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑉 ) | |
| ccatcan2d.b | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑉 ) | ||
| ccatcan2d.c | ⊢ ( 𝜑 → 𝐶 ∈ Word 𝑉 ) | ||
| Assertion | ccatcan2d | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatcan2d.a | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑉 ) | |
| 2 | ccatcan2d.b | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑉 ) | |
| 3 | ccatcan2d.c | ⊢ ( 𝜑 → 𝐶 ∈ Word 𝑉 ) | |
| 4 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) | |
| 5 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 | 6 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 9 | lencl | ⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 11 | 10 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 13 | lencl | ⊢ ( 𝐶 ∈ Word 𝑉 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℕ0 ) |
| 15 | 14 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐶 ) ∈ ℂ ) |
| 17 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) | |
| 18 | 1 3 17 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 19 | fveq2 | ⊢ ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ♯ ‘ ( 𝐴 ++ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) | |
| 20 | 18 19 | sylan9req | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) ) |
| 21 | ccatlen | ⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) | |
| 22 | 2 3 21 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ ( 𝐵 ++ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐶 ) ) = ( ( ♯ ‘ 𝐵 ) + ( ♯ ‘ 𝐶 ) ) ) |
| 25 | 8 12 16 24 | addcan2ad | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐵 ) ) |
| 26 | 4 25 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) |
| 27 | 26 | ex | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ) ) |
| 28 | pfxccat1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) | |
| 29 | 1 3 28 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = 𝐴 ) |
| 30 | pfxccat1 | ⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐶 ∈ Word 𝑉 ) → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) | |
| 31 | 2 3 30 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) = 𝐵 ) |
| 32 | 29 31 | eqeq12d | ⊢ ( 𝜑 → ( ( ( 𝐴 ++ 𝐶 ) prefix ( ♯ ‘ 𝐴 ) ) = ( ( 𝐵 ++ 𝐶 ) prefix ( ♯ ‘ 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 33 | 27 32 | sylibd | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) → 𝐴 = 𝐵 ) ) |
| 34 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ) | |
| 35 | 33 34 | impbid1 | ⊢ ( 𝜑 → ( ( 𝐴 ++ 𝐶 ) = ( 𝐵 ++ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |