This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzosumm1.1 | |- ( ph -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| fzosumm1.2 | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A e. CC ) |
||
| fzosumm1.3 | |- ( k = ( N - 1 ) -> A = B ) |
||
| fzosumm1.n | |- ( ph -> N e. ZZ ) |
||
| Assertion | fzosumm1 | |- ( ph -> sum_ k e. ( M ..^ N ) A = ( sum_ k e. ( M ..^ ( N - 1 ) ) A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosumm1.1 | |- ( ph -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 2 | fzosumm1.2 | |- ( ( ph /\ k e. ( M ..^ N ) ) -> A e. CC ) |
|
| 3 | fzosumm1.3 | |- ( k = ( N - 1 ) -> A = B ) |
|
| 4 | fzosumm1.n | |- ( ph -> N e. ZZ ) |
|
| 5 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 7 | 6 | eqcomd | |- ( ph -> ( M ... ( N - 1 ) ) = ( M ..^ N ) ) |
| 8 | 7 | eleq2d | |- ( ph -> ( k e. ( M ... ( N - 1 ) ) <-> k e. ( M ..^ N ) ) ) |
| 9 | 8 | biimpa | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) |
| 10 | 9 2 | syldan | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 11 | 1 10 3 | fsumm1 | |- ( ph -> sum_ k e. ( M ... ( N - 1 ) ) A = ( sum_ k e. ( M ... ( ( N - 1 ) - 1 ) ) A + B ) ) |
| 12 | 6 | sumeq1d | |- ( ph -> sum_ k e. ( M ..^ N ) A = sum_ k e. ( M ... ( N - 1 ) ) A ) |
| 13 | eluzelz | |- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( N - 1 ) e. ZZ ) |
|
| 14 | fzoval | |- ( ( N - 1 ) e. ZZ -> ( M ..^ ( N - 1 ) ) = ( M ... ( ( N - 1 ) - 1 ) ) ) |
|
| 15 | 1 13 14 | 3syl | |- ( ph -> ( M ..^ ( N - 1 ) ) = ( M ... ( ( N - 1 ) - 1 ) ) ) |
| 16 | 15 | sumeq1d | |- ( ph -> sum_ k e. ( M ..^ ( N - 1 ) ) A = sum_ k e. ( M ... ( ( N - 1 ) - 1 ) ) A ) |
| 17 | 16 | oveq1d | |- ( ph -> ( sum_ k e. ( M ..^ ( N - 1 ) ) A + B ) = ( sum_ k e. ( M ... ( ( N - 1 ) - 1 ) ) A + B ) ) |
| 18 | 11 12 17 | 3eqtr4d | |- ( ph -> sum_ k e. ( M ..^ N ) A = ( sum_ k e. ( M ..^ ( N - 1 ) ) A + B ) ) |