This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitpr | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 2 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 2 | 1 | a1i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 2 = ( 1 + 1 ) ) |
| 3 | 2 | oveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 2 ) = ( 𝐵 + ( 1 + 1 ) ) ) |
| 4 | eluzelcn | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 5 | 1cnd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → 1 ∈ ℂ ) | |
| 6 | add32r | ⊢ ( ( 𝐵 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐵 + ( 1 + 1 ) ) = ( ( 𝐵 + 1 ) + 1 ) ) | |
| 7 | 4 5 5 6 | syl3anc | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + ( 1 + 1 ) ) = ( ( 𝐵 + 1 ) + 1 ) ) |
| 8 | 3 7 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 2 ) = ( ( 𝐵 + 1 ) + 1 ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 2 ) ) = ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) ) |
| 10 | peano2uz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 11 | fzosplitsn | ⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( ( 𝐵 + 1 ) + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) ) |
| 13 | fzosplitsn | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ) | |
| 14 | 13 | uneq1d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) = ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) ) |
| 15 | unass | ⊢ ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) | |
| 16 | 15 | a1i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 } ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) ) |
| 17 | df-pr | ⊢ { 𝐵 , ( 𝐵 + 1 ) } = ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) | |
| 18 | 17 | eqcomi | ⊢ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) = { 𝐵 , ( 𝐵 + 1 ) } |
| 19 | 18 | a1i | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) = { 𝐵 , ( 𝐵 + 1 ) } ) |
| 20 | 19 | uneq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ 𝐵 ) ∪ ( { 𝐵 } ∪ { ( 𝐵 + 1 ) } ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |
| 21 | 14 16 20 | 3eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) ∪ { ( 𝐵 + 1 ) } ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |
| 22 | 9 12 21 | 3eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( 𝐵 + 2 ) ) = ( ( 𝐴 ..^ 𝐵 ) ∪ { 𝐵 , ( 𝐵 + 1 ) } ) ) |