This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 25-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitprm1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℤ ) | |
| 2 | peano2zm | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 − 1 ) ∈ ℤ ) | |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 1 ) ∈ ℤ ) |
| 4 | zltlem1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 < 𝐵 ↔ 𝐴 ≤ ( 𝐵 − 1 ) ) ) | |
| 5 | 4 | biimp3a | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ ( 𝐵 − 1 ) ) |
| 6 | eluz2 | ⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ↔ ( 𝐴 ∈ ℤ ∧ ( 𝐵 − 1 ) ∈ ℤ ∧ 𝐴 ≤ ( 𝐵 − 1 ) ) ) | |
| 7 | 1 3 5 6 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
| 8 | fzosplitpr | ⊢ ( ( 𝐵 − 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ..^ ( ( 𝐵 − 1 ) + 2 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ..^ ( ( 𝐵 − 1 ) + 2 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) ) |
| 10 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 11 | 1cnd | ⊢ ( 𝐵 ∈ ℤ → 1 ∈ ℂ ) | |
| 12 | 2cnd | ⊢ ( 𝐵 ∈ ℤ → 2 ∈ ℂ ) | |
| 13 | 10 11 12 | subadd23d | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 − 1 ) + 2 ) = ( 𝐵 + ( 2 − 1 ) ) ) |
| 14 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 15 | 14 | oveq2i | ⊢ ( 𝐵 + ( 2 − 1 ) ) = ( 𝐵 + 1 ) |
| 16 | 13 15 | eqtr2di | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 + 1 ) = ( ( 𝐵 − 1 ) + 2 ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( 𝐴 ..^ ( ( 𝐵 − 1 ) + 2 ) ) ) |
| 18 | npcan1 | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 − 1 ) + 1 ) = 𝐵 ) | |
| 19 | 10 18 | syl | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐵 − 1 ) + 1 ) = 𝐵 ) |
| 20 | 19 | eqcomd | ⊢ ( 𝐵 ∈ ℤ → 𝐵 = ( ( 𝐵 − 1 ) + 1 ) ) |
| 21 | 20 | preq2d | ⊢ ( 𝐵 ∈ ℤ → { ( 𝐵 − 1 ) , 𝐵 } = { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) |
| 22 | 21 | uneq2d | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , 𝐵 } ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) ) |
| 23 | 17 22 | eqeq12d | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , 𝐵 } ) ↔ ( 𝐴 ..^ ( ( 𝐵 − 1 ) + 2 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) ) ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , 𝐵 } ) ↔ ( 𝐴 ..^ ( ( 𝐵 − 1 ) + 2 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , ( ( 𝐵 − 1 ) + 1 ) } ) ) ) |
| 25 | 9 24 | mpbird | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵 ) → ( 𝐴 ..^ ( 𝐵 + 1 ) ) = ( ( 𝐴 ..^ ( 𝐵 − 1 ) ) ∪ { ( 𝐵 − 1 ) , 𝐵 } ) ) |