This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof shortened by AV, 25-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitprm1 | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> A e. ZZ ) |
|
| 2 | peano2zm | |- ( B e. ZZ -> ( B - 1 ) e. ZZ ) |
|
| 3 | 2 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( B - 1 ) e. ZZ ) |
| 4 | zltlem1 | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B <-> A <_ ( B - 1 ) ) ) |
|
| 5 | 4 | biimp3a | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> A <_ ( B - 1 ) ) |
| 6 | eluz2 | |- ( ( B - 1 ) e. ( ZZ>= ` A ) <-> ( A e. ZZ /\ ( B - 1 ) e. ZZ /\ A <_ ( B - 1 ) ) ) |
|
| 7 | 1 3 5 6 | syl3anbrc | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( B - 1 ) e. ( ZZ>= ` A ) ) |
| 8 | fzosplitpr | |- ( ( B - 1 ) e. ( ZZ>= ` A ) -> ( A ..^ ( ( B - 1 ) + 2 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( A ..^ ( ( B - 1 ) + 2 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) ) |
| 10 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 11 | 1cnd | |- ( B e. ZZ -> 1 e. CC ) |
|
| 12 | 2cnd | |- ( B e. ZZ -> 2 e. CC ) |
|
| 13 | 10 11 12 | subadd23d | |- ( B e. ZZ -> ( ( B - 1 ) + 2 ) = ( B + ( 2 - 1 ) ) ) |
| 14 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 15 | 14 | oveq2i | |- ( B + ( 2 - 1 ) ) = ( B + 1 ) |
| 16 | 13 15 | eqtr2di | |- ( B e. ZZ -> ( B + 1 ) = ( ( B - 1 ) + 2 ) ) |
| 17 | 16 | oveq2d | |- ( B e. ZZ -> ( A ..^ ( B + 1 ) ) = ( A ..^ ( ( B - 1 ) + 2 ) ) ) |
| 18 | npcan1 | |- ( B e. CC -> ( ( B - 1 ) + 1 ) = B ) |
|
| 19 | 10 18 | syl | |- ( B e. ZZ -> ( ( B - 1 ) + 1 ) = B ) |
| 20 | 19 | eqcomd | |- ( B e. ZZ -> B = ( ( B - 1 ) + 1 ) ) |
| 21 | 20 | preq2d | |- ( B e. ZZ -> { ( B - 1 ) , B } = { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) |
| 22 | 21 | uneq2d | |- ( B e. ZZ -> ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , B } ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) ) |
| 23 | 17 22 | eqeq12d | |- ( B e. ZZ -> ( ( A ..^ ( B + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , B } ) <-> ( A ..^ ( ( B - 1 ) + 2 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) ) ) |
| 24 | 23 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( ( A ..^ ( B + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , B } ) <-> ( A ..^ ( ( B - 1 ) + 2 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , ( ( B - 1 ) + 1 ) } ) ) ) |
| 25 | 9 24 | mpbird | |- ( ( A e. ZZ /\ B e. ZZ /\ A < B ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ ( B - 1 ) ) u. { ( B - 1 ) , B } ) ) |