This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzosplitpr | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 2 ) ) = ( ( A ..^ B ) u. { B , ( B + 1 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 2 | 1 | a1i | |- ( B e. ( ZZ>= ` A ) -> 2 = ( 1 + 1 ) ) |
| 3 | 2 | oveq2d | |- ( B e. ( ZZ>= ` A ) -> ( B + 2 ) = ( B + ( 1 + 1 ) ) ) |
| 4 | eluzelcn | |- ( B e. ( ZZ>= ` A ) -> B e. CC ) |
|
| 5 | 1cnd | |- ( B e. ( ZZ>= ` A ) -> 1 e. CC ) |
|
| 6 | add32r | |- ( ( B e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( B + ( 1 + 1 ) ) = ( ( B + 1 ) + 1 ) ) |
|
| 7 | 4 5 5 6 | syl3anc | |- ( B e. ( ZZ>= ` A ) -> ( B + ( 1 + 1 ) ) = ( ( B + 1 ) + 1 ) ) |
| 8 | 3 7 | eqtrd | |- ( B e. ( ZZ>= ` A ) -> ( B + 2 ) = ( ( B + 1 ) + 1 ) ) |
| 9 | 8 | oveq2d | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 2 ) ) = ( A ..^ ( ( B + 1 ) + 1 ) ) ) |
| 10 | peano2uz | |- ( B e. ( ZZ>= ` A ) -> ( B + 1 ) e. ( ZZ>= ` A ) ) |
|
| 11 | fzosplitsn | |- ( ( B + 1 ) e. ( ZZ>= ` A ) -> ( A ..^ ( ( B + 1 ) + 1 ) ) = ( ( A ..^ ( B + 1 ) ) u. { ( B + 1 ) } ) ) |
|
| 12 | 10 11 | syl | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( ( B + 1 ) + 1 ) ) = ( ( A ..^ ( B + 1 ) ) u. { ( B + 1 ) } ) ) |
| 13 | fzosplitsn | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. { B } ) ) |
|
| 14 | 13 | uneq1d | |- ( B e. ( ZZ>= ` A ) -> ( ( A ..^ ( B + 1 ) ) u. { ( B + 1 ) } ) = ( ( ( A ..^ B ) u. { B } ) u. { ( B + 1 ) } ) ) |
| 15 | unass | |- ( ( ( A ..^ B ) u. { B } ) u. { ( B + 1 ) } ) = ( ( A ..^ B ) u. ( { B } u. { ( B + 1 ) } ) ) |
|
| 16 | 15 | a1i | |- ( B e. ( ZZ>= ` A ) -> ( ( ( A ..^ B ) u. { B } ) u. { ( B + 1 ) } ) = ( ( A ..^ B ) u. ( { B } u. { ( B + 1 ) } ) ) ) |
| 17 | df-pr | |- { B , ( B + 1 ) } = ( { B } u. { ( B + 1 ) } ) |
|
| 18 | 17 | eqcomi | |- ( { B } u. { ( B + 1 ) } ) = { B , ( B + 1 ) } |
| 19 | 18 | a1i | |- ( B e. ( ZZ>= ` A ) -> ( { B } u. { ( B + 1 ) } ) = { B , ( B + 1 ) } ) |
| 20 | 19 | uneq2d | |- ( B e. ( ZZ>= ` A ) -> ( ( A ..^ B ) u. ( { B } u. { ( B + 1 ) } ) ) = ( ( A ..^ B ) u. { B , ( B + 1 ) } ) ) |
| 21 | 14 16 20 | 3eqtrd | |- ( B e. ( ZZ>= ` A ) -> ( ( A ..^ ( B + 1 ) ) u. { ( B + 1 ) } ) = ( ( A ..^ B ) u. { B , ( B + 1 ) } ) ) |
| 22 | 9 12 21 | 3eqtrd | |- ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 2 ) ) = ( ( A ..^ B ) u. { B , ( B + 1 ) } ) ) |