This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0to42pr | ⊢ ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 3 | 2re | ⊢ 2 ∈ ℝ | |
| 4 | 4re | ⊢ 4 ∈ ℝ | |
| 5 | 2lt4 | ⊢ 2 < 4 | |
| 6 | 3 4 5 | ltleii | ⊢ 2 ≤ 4 |
| 7 | elfz2nn0 | ⊢ ( 2 ∈ ( 0 ... 4 ) ↔ ( 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4 ) ) | |
| 8 | 1 2 6 7 | mpbir3an | ⊢ 2 ∈ ( 0 ... 4 ) |
| 9 | fzosplit | ⊢ ( 2 ∈ ( 0 ... 4 ) → ( 0 ..^ 4 ) = ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 0 ..^ 4 ) = ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) ) |
| 11 | fzo0to2pr | ⊢ ( 0 ..^ 2 ) = { 0 , 1 } | |
| 12 | 4z | ⊢ 4 ∈ ℤ | |
| 13 | fzoval | ⊢ ( 4 ∈ ℤ → ( 2 ..^ 4 ) = ( 2 ... ( 4 − 1 ) ) ) | |
| 14 | 12 13 | ax-mp | ⊢ ( 2 ..^ 4 ) = ( 2 ... ( 4 − 1 ) ) |
| 15 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 16 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 17 | 15 16 | eqtri | ⊢ ( 4 − 1 ) = ( 2 + 1 ) |
| 18 | 17 | oveq2i | ⊢ ( 2 ... ( 4 − 1 ) ) = ( 2 ... ( 2 + 1 ) ) |
| 19 | 2z | ⊢ 2 ∈ ℤ | |
| 20 | fzpr | ⊢ ( 2 ∈ ℤ → ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } ) | |
| 21 | 19 20 | ax-mp | ⊢ ( 2 ... ( 2 + 1 ) ) = { 2 , ( 2 + 1 ) } |
| 22 | 18 21 | eqtri | ⊢ ( 2 ... ( 4 − 1 ) ) = { 2 , ( 2 + 1 ) } |
| 23 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 24 | 23 | preq2i | ⊢ { 2 , ( 2 + 1 ) } = { 2 , 3 } |
| 25 | 14 22 24 | 3eqtri | ⊢ ( 2 ..^ 4 ) = { 2 , 3 } |
| 26 | 11 25 | uneq12i | ⊢ ( ( 0 ..^ 2 ) ∪ ( 2 ..^ 4 ) ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |
| 27 | 10 26 | eqtri | ⊢ ( 0 ..^ 4 ) = ( { 0 , 1 } ∪ { 2 , 3 } ) |