This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open integer range from 1 to 4 is an unordered triple. (Contributed by AV, 28-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo1to4tp | ⊢ ( 1 ..^ 4 ) = { 1 , 2 , 3 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4z | ⊢ 4 ∈ ℤ | |
| 2 | fzoval | ⊢ ( 4 ∈ ℤ → ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 1 ..^ 4 ) = ( 1 ... ( 4 − 1 ) ) |
| 4 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 5 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 6 | 2cn | ⊢ 2 ∈ ℂ | |
| 7 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 8 | 6 7 | addcomi | ⊢ ( 2 + 1 ) = ( 1 + 2 ) |
| 9 | 4 5 8 | 3eqtri | ⊢ ( 4 − 1 ) = ( 1 + 2 ) |
| 10 | 9 | oveq2i | ⊢ ( 1 ... ( 4 − 1 ) ) = ( 1 ... ( 1 + 2 ) ) |
| 11 | 1z | ⊢ 1 ∈ ℤ | |
| 12 | fztp | ⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | |
| 13 | eqidd | ⊢ ( 1 ∈ ℤ → 1 = 1 ) | |
| 14 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 15 | 14 | a1i | ⊢ ( 1 ∈ ℤ → ( 1 + 1 ) = 2 ) |
| 16 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 17 | 16 | a1i | ⊢ ( 1 ∈ ℤ → ( 1 + 2 ) = 3 ) |
| 18 | 13 15 17 | tpeq123d | ⊢ ( 1 ∈ ℤ → { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) |
| 19 | 12 18 | eqtrd | ⊢ ( 1 ∈ ℤ → ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } ) |
| 20 | 11 19 | ax-mp | ⊢ ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } |
| 21 | 3 10 20 | 3eqtri | ⊢ ( 1 ..^ 4 ) = { 1 , 2 , 3 } |