This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0sn0fzo1 | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℕ0 ) |
| 3 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 4 | nnge1 | ⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) | |
| 5 | elfz2nn0 | ⊢ ( 1 ∈ ( 0 ... 𝑁 ) ↔ ( 1 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) | |
| 6 | 2 3 4 5 | syl3anbrc | ⊢ ( 𝑁 ∈ ℕ → 1 ∈ ( 0 ... 𝑁 ) ) |
| 7 | fzosplit | ⊢ ( 1 ∈ ( 0 ... 𝑁 ) → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) ) |
| 9 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 10 | 9 | a1i | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 1 ) = { 0 } ) |
| 11 | 10 | uneq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 0 ..^ 1 ) ∪ ( 1 ..^ 𝑁 ) ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 0 ..^ 𝑁 ) = ( { 0 } ∪ ( 1 ..^ 𝑁 ) ) ) |