This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is the union of the singleton set containing 0 and a half-open range of positive integers. (Contributed by Alexander van der Vekens, 18-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0sn0fzo1 | |- ( N e. NN -> ( 0 ..^ N ) = ( { 0 } u. ( 1 ..^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 | |- 1 e. NN0 |
|
| 2 | 1 | a1i | |- ( N e. NN -> 1 e. NN0 ) |
| 3 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 4 | nnge1 | |- ( N e. NN -> 1 <_ N ) |
|
| 5 | elfz2nn0 | |- ( 1 e. ( 0 ... N ) <-> ( 1 e. NN0 /\ N e. NN0 /\ 1 <_ N ) ) |
|
| 6 | 2 3 4 5 | syl3anbrc | |- ( N e. NN -> 1 e. ( 0 ... N ) ) |
| 7 | fzosplit | |- ( 1 e. ( 0 ... N ) -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) |
|
| 8 | 6 7 | syl | |- ( N e. NN -> ( 0 ..^ N ) = ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) ) |
| 9 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 10 | 9 | a1i | |- ( N e. NN -> ( 0 ..^ 1 ) = { 0 } ) |
| 11 | 10 | uneq1d | |- ( N e. NN -> ( ( 0 ..^ 1 ) u. ( 1 ..^ N ) ) = ( { 0 } u. ( 1 ..^ N ) ) ) |
| 12 | 8 11 | eqtrd | |- ( N e. NN -> ( 0 ..^ N ) = ( { 0 } u. ( 1 ..^ N ) ) ) |