This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero is the only one of the first A nonnegative integers that is divisible by A . (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0dvdseq | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐴 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 < 𝐴 ) | |
| 2 | elfzoelz | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | 2 | zred | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 4 | elfzoel2 | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∈ ℤ ) | |
| 5 | 4 | zred | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 6 | 3 5 | ltnled | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵 ) ) |
| 7 | 1 6 | mpbid | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ¬ 𝐴 ≤ 𝐵 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ¬ 𝐴 ≤ 𝐵 ) |
| 9 | elfzonn0 | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐵 ∈ ℕ0 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℕ0 ) |
| 11 | simpr | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ≠ 0 ) | |
| 12 | eldifsn | ⊢ ( 𝐵 ∈ ( ℕ0 ∖ { 0 } ) ↔ ( 𝐵 ∈ ℕ0 ∧ 𝐵 ≠ 0 ) ) | |
| 13 | 10 11 12 | sylanbrc | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ( ℕ0 ∖ { 0 } ) ) |
| 14 | dfn2 | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) | |
| 15 | 13 14 | eleqtrrdi | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℕ ) |
| 16 | dvdsle | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵 ) ) | |
| 17 | 4 15 16 | syl2an2r | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ( 𝐴 ∥ 𝐵 → 𝐴 ≤ 𝐵 ) ) |
| 18 | 8 17 | mtod | ⊢ ( ( 𝐵 ∈ ( 0 ..^ 𝐴 ) ∧ 𝐵 ≠ 0 ) → ¬ 𝐴 ∥ 𝐵 ) |
| 19 | 18 | ex | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 ≠ 0 → ¬ 𝐴 ∥ 𝐵 ) ) |
| 20 | 19 | necon4ad | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐴 ∥ 𝐵 → 𝐵 = 0 ) ) |
| 21 | dvds0 | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∥ 0 ) | |
| 22 | 4 21 | syl | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → 𝐴 ∥ 0 ) |
| 23 | breq2 | ⊢ ( 𝐵 = 0 → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ 0 ) ) | |
| 24 | 22 23 | syl5ibrcom | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐵 = 0 → 𝐴 ∥ 𝐵 ) ) |
| 25 | 20 24 | impbid | ⊢ ( 𝐵 ∈ ( 0 ..^ 𝐴 ) → ( 𝐴 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |