This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of positive integers defined in terms of nonnegative integers. (Contributed by NM, 23-Sep-2007) (Proof shortened by Mario Carneiro, 13-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfn2 | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 | ⊢ ℕ0 = ( ℕ ∪ { 0 } ) | |
| 2 | 1 | difeq1i | ⊢ ( ℕ0 ∖ { 0 } ) = ( ( ℕ ∪ { 0 } ) ∖ { 0 } ) |
| 3 | difun2 | ⊢ ( ( ℕ ∪ { 0 } ) ∖ { 0 } ) = ( ℕ ∖ { 0 } ) | |
| 4 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 5 | difsn | ⊢ ( ¬ 0 ∈ ℕ → ( ℕ ∖ { 0 } ) = ℕ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ℕ ∖ { 0 } ) = ℕ |
| 7 | 2 3 6 | 3eqtrri | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) |