This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero is the only one of the first A nonnegative integers that is divisible by A . (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0dvdseq | |- ( B e. ( 0 ..^ A ) -> ( A || B <-> B = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzolt2 | |- ( B e. ( 0 ..^ A ) -> B < A ) |
|
| 2 | elfzoelz | |- ( B e. ( 0 ..^ A ) -> B e. ZZ ) |
|
| 3 | 2 | zred | |- ( B e. ( 0 ..^ A ) -> B e. RR ) |
| 4 | elfzoel2 | |- ( B e. ( 0 ..^ A ) -> A e. ZZ ) |
|
| 5 | 4 | zred | |- ( B e. ( 0 ..^ A ) -> A e. RR ) |
| 6 | 3 5 | ltnled | |- ( B e. ( 0 ..^ A ) -> ( B < A <-> -. A <_ B ) ) |
| 7 | 1 6 | mpbid | |- ( B e. ( 0 ..^ A ) -> -. A <_ B ) |
| 8 | 7 | adantr | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A <_ B ) |
| 9 | elfzonn0 | |- ( B e. ( 0 ..^ A ) -> B e. NN0 ) |
|
| 10 | 9 | adantr | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN0 ) |
| 11 | simpr | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B =/= 0 ) |
|
| 12 | eldifsn | |- ( B e. ( NN0 \ { 0 } ) <-> ( B e. NN0 /\ B =/= 0 ) ) |
|
| 13 | 10 11 12 | sylanbrc | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. ( NN0 \ { 0 } ) ) |
| 14 | dfn2 | |- NN = ( NN0 \ { 0 } ) |
|
| 15 | 13 14 | eleqtrrdi | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN ) |
| 16 | dvdsle | |- ( ( A e. ZZ /\ B e. NN ) -> ( A || B -> A <_ B ) ) |
|
| 17 | 4 15 16 | syl2an2r | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> ( A || B -> A <_ B ) ) |
| 18 | 8 17 | mtod | |- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A || B ) |
| 19 | 18 | ex | |- ( B e. ( 0 ..^ A ) -> ( B =/= 0 -> -. A || B ) ) |
| 20 | 19 | necon4ad | |- ( B e. ( 0 ..^ A ) -> ( A || B -> B = 0 ) ) |
| 21 | dvds0 | |- ( A e. ZZ -> A || 0 ) |
|
| 22 | 4 21 | syl | |- ( B e. ( 0 ..^ A ) -> A || 0 ) |
| 23 | breq2 | |- ( B = 0 -> ( A || B <-> A || 0 ) ) |
|
| 24 | 22 23 | syl5ibrcom | |- ( B e. ( 0 ..^ A ) -> ( B = 0 -> A || B ) ) |
| 25 | 20 24 | impbid | |- ( B e. ( 0 ..^ A ) -> ( A || B <-> B = 0 ) ) |