This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdifsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑁 + 1 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... ( 𝑁 + 1 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑁 + 1 ) } ) = ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) ) |
| 3 | uncom | ⊢ ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) | |
| 4 | ssun2 | ⊢ { ( 𝑁 + 1 ) } ⊆ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) | |
| 5 | incom | ⊢ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) | |
| 6 | fzp1disj | ⊢ ( ( 𝑀 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ | |
| 7 | 5 6 | eqtri | ⊢ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| 9 | uneqdifeq | ⊢ ( ( { ( 𝑁 + 1 ) } ⊆ ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∧ ( { ( 𝑁 + 1 ) } ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) → ( ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) ) | |
| 10 | 4 8 9 | sylancr | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( { ( 𝑁 + 1 ) } ∪ ( 𝑀 ... 𝑁 ) ) = ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ↔ ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) ) |
| 11 | 3 10 | mpbii | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑀 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ∖ { ( 𝑁 + 1 ) } ) = ( 𝑀 ... 𝑁 ) ) |
| 12 | 2 11 | eqtr2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 + 1 ) ) ∖ { ( 𝑁 + 1 ) } ) ) |