This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of defining the first two values of a sequence on NN . (Contributed by NM, 5-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzprval | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 2 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz12pr | ⊢ ( 1 ... 2 ) = { 1 , 2 } | |
| 2 | 1 | raleqi | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 2 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ∀ 𝑥 ∈ { 1 , 2 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ) |
| 3 | 1ex | ⊢ 1 ∈ V | |
| 4 | 2ex | ⊢ 2 ∈ V | |
| 5 | fveq2 | ⊢ ( 𝑥 = 1 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 1 ) ) | |
| 6 | iftrue | ⊢ ( 𝑥 = 1 → if ( 𝑥 = 1 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑥 = 1 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( 𝐹 ‘ 1 ) = 𝐴 ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 2 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 2 ) ) | |
| 9 | 1ne2 | ⊢ 1 ≠ 2 | |
| 10 | 9 | necomi | ⊢ 2 ≠ 1 |
| 11 | pm13.181 | ⊢ ( ( 𝑥 = 2 ∧ 2 ≠ 1 ) → 𝑥 ≠ 1 ) | |
| 12 | 10 11 | mpan2 | ⊢ ( 𝑥 = 2 → 𝑥 ≠ 1 ) |
| 13 | 12 | neneqd | ⊢ ( 𝑥 = 2 → ¬ 𝑥 = 1 ) |
| 14 | 13 | iffalsed | ⊢ ( 𝑥 = 2 → if ( 𝑥 = 1 , 𝐴 , 𝐵 ) = 𝐵 ) |
| 15 | 8 14 | eqeq12d | ⊢ ( 𝑥 = 2 → ( ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
| 16 | 3 4 7 15 | ralpr | ⊢ ( ∀ 𝑥 ∈ { 1 , 2 } ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |
| 17 | 2 16 | bitri | ⊢ ( ∀ 𝑥 ∈ ( 1 ... 2 ) ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 = 1 , 𝐴 , 𝐵 ) ↔ ( ( 𝐹 ‘ 1 ) = 𝐴 ∧ ( 𝐹 ‘ 2 ) = 𝐵 ) ) |