This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the last element of a half-open range of sequential integers. (Contributed by Thierry Arnoux, 5-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodif2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ..^ ( 𝑁 + 1 ) ) ∖ { 𝑁 } ) = ( 𝑀 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzosplitsn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ..^ ( 𝑁 + 1 ) ) = ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ) | |
| 2 | 1 | difeq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ..^ ( 𝑁 + 1 ) ) ∖ { 𝑁 } ) = ( ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) ) |
| 3 | difun2 | ⊢ ( ( ( 𝑀 ..^ 𝑁 ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 𝑀 ..^ 𝑁 ) ∖ { 𝑁 } ) | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ..^ ( 𝑁 + 1 ) ) ∖ { 𝑁 } ) = ( ( 𝑀 ..^ 𝑁 ) ∖ { 𝑁 } ) ) |
| 5 | fzonel | ⊢ ¬ 𝑁 ∈ ( 𝑀 ..^ 𝑁 ) | |
| 6 | disjsn | ⊢ ( ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 𝑀 ..^ 𝑁 ) ) | |
| 7 | 5 6 | mpbir | ⊢ ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ |
| 8 | disjdif2 | ⊢ ( ( ( 𝑀 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ → ( ( 𝑀 ..^ 𝑁 ) ∖ { 𝑁 } ) = ( 𝑀 ..^ 𝑁 ) ) | |
| 9 | 7 8 | mp1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ..^ 𝑁 ) ∖ { 𝑁 } ) = ( 𝑀 ..^ 𝑁 ) ) |
| 10 | 4 9 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ..^ ( 𝑁 + 1 ) ) ∖ { 𝑁 } ) = ( 𝑀 ..^ 𝑁 ) ) |