This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc . (Contributed by Thierry Arnoux, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzdif2 | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( M ... ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzspl | |- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
|
| 2 | 1 | difeq1d | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) ) |
| 3 | difun2 | |- ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) |
|
| 4 | 2 3 | eqtrdi | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) ) |
| 5 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 6 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
| 7 | uznfz | |- ( N e. ( ZZ>= ` N ) -> -. N e. ( M ... ( N - 1 ) ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( N e. ( ZZ>= ` M ) -> -. N e. ( M ... ( N - 1 ) ) ) |
| 9 | disjsn | |- ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( M ... ( N - 1 ) ) ) |
|
| 10 | 8 9 | sylibr | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
| 11 | disjdif2 | |- ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) |
|
| 12 | 10 11 | syl | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) |
| 13 | 4 12 | eqtrd | |- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( M ... ( N - 1 ) ) ) |