This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split the last element of a finite set of sequential integers. More generic than fzsuc . (Contributed by Thierry Arnoux, 7-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzspl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 2 | 1 | zcnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) |
| 3 | 1zzd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 1 ∈ ℤ ) | |
| 4 | 3 | zcnd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 1 ∈ ℂ ) |
| 5 | 2 4 | npcand | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 7 | 6 | ibir | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | eluzelre | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) | |
| 9 | 8 | lem1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 1 ) ≤ 𝑁 ) |
| 10 | 1 3 | zsubcld | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 11 | eluz1 | ⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑁 − 1 ) ≤ 𝑁 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ↔ ( 𝑁 ∈ ℤ ∧ ( 𝑁 − 1 ) ≤ 𝑁 ) ) ) |
| 13 | 1 9 12 | mpbir2and | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 14 | fzsplit2 | ⊢ ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) | |
| 15 | 7 13 14 | syl2anc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 16 | 5 | oveq1d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) ) |
| 17 | fzsn | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) | |
| 18 | 1 17 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ... 𝑁 ) = { 𝑁 } ) |
| 19 | 16 18 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } ) |
| 20 | 19 | uneq2d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |
| 21 | 15 20 | eqtrd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) |