This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjointness of the upper integers and a finite sequence. (Contributed by Mario Carneiro, 24-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uznfz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ¬ 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝐾 ) | |
| 2 | eluzel2 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | elfzel1 | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑀 ∈ ℤ ) | |
| 4 | elfzm11 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) ) ) | |
| 5 | simp3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 < 𝑁 ) → 𝐾 < 𝑁 ) | |
| 6 | 4 5 | biimtrdi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝐾 < 𝑁 ) ) |
| 7 | 6 | impancom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 ∈ ℤ → 𝐾 < 𝑁 ) ) |
| 8 | 3 7 | mpancom | ⊢ ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ( 𝑁 ∈ ℤ → 𝐾 < 𝑁 ) ) |
| 9 | 2 8 | syl5com | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝐾 < 𝑁 ) ) |
| 10 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 11 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 12 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 13 | ltnle | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾 ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾 ) ) |
| 15 | 10 2 14 | syl2anc | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐾 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐾 ) ) |
| 16 | 9 15 | sylibd | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → ¬ 𝑁 ≤ 𝐾 ) ) |
| 17 | 1 16 | mt2d | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → ¬ 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |