This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0fzelfz0 | ⊢ ( ( 𝑁 ∈ ( 0 ... 𝑅 ) ∧ 𝑀 ∈ ( 𝑁 ... 𝑅 ) ) → 𝑀 ∈ ( 0 ... 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝑁 ∈ ( 0 ... 𝑅 ) ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) ) | |
| 2 | elfz2 | ⊢ ( 𝑀 ∈ ( 𝑁 ... 𝑅 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ) | |
| 3 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≤ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 4 | 0red | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) → 0 ∈ ℝ ) | |
| 5 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 7 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 9 | 4 6 8 | 3jca | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) → ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≤ 𝑀 ) → ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 11 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) → 0 ≤ 𝑁 ) |
| 13 | 12 | anim1i | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≤ 𝑀 ) → ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
| 14 | letr | ⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 0 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) → 0 ≤ 𝑀 ) ) | |
| 15 | 10 13 14 | sylc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≤ 𝑀 ) → 0 ≤ 𝑀 ) |
| 16 | elnn0z | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ) ) | |
| 17 | 3 15 16 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ) ∧ 𝑁 ≤ 𝑀 ) → 𝑀 ∈ ℕ0 ) |
| 18 | 17 | exp31 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑀 ∈ ℤ → ( 𝑁 ≤ 𝑀 → 𝑀 ∈ ℕ0 ) ) ) |
| 19 | 18 | com23 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≤ 𝑀 → ( 𝑀 ∈ ℤ → 𝑀 ∈ ℕ0 ) ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → ( 𝑁 ≤ 𝑀 → ( 𝑀 ∈ ℤ → 𝑀 ∈ ℕ0 ) ) ) |
| 21 | 20 | com13 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ≤ 𝑀 → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → 𝑀 ∈ ℕ0 ) ) ) |
| 22 | 21 | adantrd | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → 𝑀 ∈ ℕ0 ) ) ) |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → 𝑀 ∈ ℕ0 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → 𝑀 ∈ ℕ0 ) ) |
| 25 | 24 | imp | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) ) → 𝑀 ∈ ℕ0 ) |
| 26 | simpr2 | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) ) → 𝑅 ∈ ℕ0 ) | |
| 27 | simplrr | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) ) → 𝑀 ≤ 𝑅 ) | |
| 28 | 25 26 27 | 3jca | ⊢ ( ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) |
| 29 | 28 | ex | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑅 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) ) |
| 30 | 2 29 | sylbi | ⊢ ( 𝑀 ∈ ( 𝑁 ... 𝑅 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) ) |
| 31 | 30 | com12 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑁 ≤ 𝑅 ) → ( 𝑀 ∈ ( 𝑁 ... 𝑅 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) ) |
| 32 | 1 31 | sylbi | ⊢ ( 𝑁 ∈ ( 0 ... 𝑅 ) → ( 𝑀 ∈ ( 𝑁 ... 𝑅 ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) ) |
| 33 | 32 | imp | ⊢ ( ( 𝑁 ∈ ( 0 ... 𝑅 ) ∧ 𝑀 ∈ ( 𝑁 ... 𝑅 ) ) → ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) |
| 34 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝑅 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0 ∧ 𝑀 ≤ 𝑅 ) ) | |
| 35 | 33 34 | sylibr | ⊢ ( ( 𝑁 ∈ ( 0 ... 𝑅 ) ∧ 𝑀 ∈ ( 𝑁 ... 𝑅 ) ) → 𝑀 ∈ ( 0 ... 𝑅 ) ) |