This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptrabfv.f | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ∣ 𝜑 } ) | |
| fvmptrabfv.r | ⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | fvmptrabfv | ⊢ ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptrabfv.f | ⊢ 𝐹 = ( 𝑥 ∈ V ↦ { 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ∣ 𝜑 } ) | |
| 2 | fvmptrabfv.r | ⊢ ( 𝑥 = 𝑋 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) | |
| 4 | 3 2 | rabeqbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ ( 𝐺 ‘ 𝑥 ) ∣ 𝜑 } = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
| 5 | fvex | ⊢ ( 𝐺 ‘ 𝑋 ) ∈ V | |
| 6 | 5 | rabex | ⊢ { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ∈ V |
| 7 | 4 1 6 | fvmpt | ⊢ ( 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
| 8 | fvprc | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = ∅ ) | |
| 9 | fvprc | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐺 ‘ 𝑋 ) = ∅ ) | |
| 10 | 9 | rabeqdv | ⊢ ( ¬ 𝑋 ∈ V → { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } = { 𝑦 ∈ ∅ ∣ 𝜓 } ) |
| 11 | rab0 | ⊢ { 𝑦 ∈ ∅ ∣ 𝜓 } = ∅ | |
| 12 | 10 11 | eqtr2di | ⊢ ( ¬ 𝑋 ∈ V → ∅ = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
| 13 | 8 12 | eqtrd | ⊢ ( ¬ 𝑋 ∈ V → ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } ) |
| 14 | 7 13 | pm2.61i | ⊢ ( 𝐹 ‘ 𝑋 ) = { 𝑦 ∈ ( 𝐺 ‘ 𝑋 ) ∣ 𝜓 } |