This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006) (Revised by Mario Carneiro, 11-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopab5.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| fvopab5.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | fvopab5 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopab5.1 | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 2 | fvopab5.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 4 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑧 𝐴 𝐹 𝑧 ) | |
| 5 | breq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 7 | nfopab2 | ⊢ Ⅎ 𝑦 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 8 | 1 7 | nfcxfr | ⊢ Ⅎ 𝑦 𝐹 |
| 9 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 10 | 6 8 9 | nfbr | ⊢ Ⅎ 𝑦 𝐴 𝐹 𝑧 |
| 11 | nfv | ⊢ Ⅎ 𝑧 𝐴 𝐹 𝑦 | |
| 12 | 5 10 11 | cbviotaw | ⊢ ( ℩ 𝑧 𝐴 𝐹 𝑧 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) |
| 13 | 4 12 | eqtri | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) |
| 14 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 15 | nfopab1 | ⊢ Ⅎ 𝑥 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 16 | 1 15 | nfcxfr | ⊢ Ⅎ 𝑥 𝐹 |
| 17 | nfcv | ⊢ Ⅎ 𝑥 𝑦 | |
| 18 | 14 16 17 | nfbr | ⊢ Ⅎ 𝑥 𝐴 𝐹 𝑦 |
| 19 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 20 | 18 19 | nfbi | ⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) |
| 21 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) | |
| 22 | 21 2 | bibi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐹 𝑦 ↔ 𝜑 ) ↔ ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) ) ) |
| 23 | df-br | ⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) | |
| 24 | 1 | eleq2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
| 25 | opabidw | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜑 ) | |
| 26 | 23 24 25 | 3bitri | ⊢ ( 𝑥 𝐹 𝑦 ↔ 𝜑 ) |
| 27 | 20 22 26 | vtoclg1f | ⊢ ( 𝐴 ∈ V → ( 𝐴 𝐹 𝑦 ↔ 𝜓 ) ) |
| 28 | 27 | iotabidv | ⊢ ( 𝐴 ∈ V → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) = ( ℩ 𝑦 𝜓 ) ) |
| 29 | 13 28 | eqtrid | ⊢ ( 𝐴 ∈ V → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝜓 ) ) |
| 30 | 3 29 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝜓 ) ) |