This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptrabfv.f | |- F = ( x e. _V |-> { y e. ( G ` x ) | ph } ) |
|
| fvmptrabfv.r | |- ( x = X -> ( ph <-> ps ) ) |
||
| Assertion | fvmptrabfv | |- ( F ` X ) = { y e. ( G ` X ) | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptrabfv.f | |- F = ( x e. _V |-> { y e. ( G ` x ) | ph } ) |
|
| 2 | fvmptrabfv.r | |- ( x = X -> ( ph <-> ps ) ) |
|
| 3 | fveq2 | |- ( x = X -> ( G ` x ) = ( G ` X ) ) |
|
| 4 | 3 2 | rabeqbidv | |- ( x = X -> { y e. ( G ` x ) | ph } = { y e. ( G ` X ) | ps } ) |
| 5 | fvex | |- ( G ` X ) e. _V |
|
| 6 | 5 | rabex | |- { y e. ( G ` X ) | ps } e. _V |
| 7 | 4 1 6 | fvmpt | |- ( X e. _V -> ( F ` X ) = { y e. ( G ` X ) | ps } ) |
| 8 | fvprc | |- ( -. X e. _V -> ( F ` X ) = (/) ) |
|
| 9 | fvprc | |- ( -. X e. _V -> ( G ` X ) = (/) ) |
|
| 10 | 9 | rabeqdv | |- ( -. X e. _V -> { y e. ( G ` X ) | ps } = { y e. (/) | ps } ) |
| 11 | rab0 | |- { y e. (/) | ps } = (/) |
|
| 12 | 10 11 | eqtr2di | |- ( -. X e. _V -> (/) = { y e. ( G ` X ) | ps } ) |
| 13 | 8 12 | eqtrd | |- ( -. X e. _V -> ( F ` X ) = { y e. ( G ` X ) | ps } ) |
| 14 | 7 13 | pm2.61i | |- ( F ` X ) = { y e. ( G ` X ) | ps } |