This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the image functor. This function takes a set A to a function x |-> ( A " x ) , providing that the latter exists. See imageval for the derivation. (Contributed by Scott Fenton, 27-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-image | ⊢ Image 𝐴 = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | 0 | cimage | ⊢ Image 𝐴 |
| 2 | cvv | ⊢ V | |
| 3 | 2 2 | cxp | ⊢ ( V × V ) |
| 4 | cep | ⊢ E | |
| 5 | 2 4 | ctxp | ⊢ ( V ⊗ E ) |
| 6 | 0 | ccnv | ⊢ ◡ 𝐴 |
| 7 | 4 6 | ccom | ⊢ ( E ∘ ◡ 𝐴 ) |
| 8 | 7 2 | ctxp | ⊢ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) |
| 9 | 5 8 | csymdif | ⊢ ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) |
| 10 | 9 | crn | ⊢ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) |
| 11 | 3 10 | cdif | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) |
| 12 | 1 11 | wceq | ⊢ Image 𝐴 = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ ◡ 𝐴 ) ⊗ V ) ) ) |