This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image A is a function. (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funimage | |- Fun Image A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss | |- ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) C_ ( _V X. _V ) |
|
| 2 | df-rel | |- ( Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) <-> ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) C_ ( _V X. _V ) ) |
|
| 3 | 1 2 | mpbir | |- Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) |
| 4 | df-image | |- Image A = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) |
|
| 5 | 4 | releqi | |- ( Rel Image A <-> Rel ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' A ) (x) _V ) ) ) ) |
| 6 | 3 5 | mpbir | |- Rel Image A |
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | brimage | |- ( x Image A y <-> y = ( A " x ) ) |
| 10 | vex | |- z e. _V |
|
| 11 | 7 10 | brimage | |- ( x Image A z <-> z = ( A " x ) ) |
| 12 | eqtr3 | |- ( ( y = ( A " x ) /\ z = ( A " x ) ) -> y = z ) |
|
| 13 | 9 11 12 | syl2anb | |- ( ( x Image A y /\ x Image A z ) -> y = z ) |
| 14 | 13 | gen2 | |- A. y A. z ( ( x Image A y /\ x Image A z ) -> y = z ) |
| 15 | 14 | ax-gen | |- A. x A. y A. z ( ( x Image A y /\ x Image A z ) -> y = z ) |
| 16 | dffun2 | |- ( Fun Image A <-> ( Rel Image A /\ A. x A. y A. z ( ( x Image A y /\ x Image A z ) -> y = z ) ) ) |
|
| 17 | 6 15 16 | mpbir2an | |- Fun Image A |