This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functermc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| functermc.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | ||
| functermc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| functermc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| functermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| functermc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| functermc.f | ⊢ 𝐹 = ( 𝐵 × 𝐶 ) | ||
| functermc.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| Assertion | functermc | ⊢ ( 𝜑 → ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 2 | functermc.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | |
| 3 | functermc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | functermc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 5 | functermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 6 | functermc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 7 | functermc.f | ⊢ 𝐹 = ( 𝐵 × 𝐶 ) | |
| 8 | functermc.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) | |
| 10 | 3 4 9 | funcf1 | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 : 𝐵 ⟶ 𝐶 ) |
| 11 | 2 4 | termcbas | ⊢ ( 𝜑 → ∃ 𝑧 𝐶 = { 𝑧 } ) |
| 12 | feq3 | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 : 𝐵 ⟶ { 𝑧 } ) ) | |
| 13 | vex | ⊢ 𝑧 ∈ V | |
| 14 | 13 | fconst2 | ⊢ ( 𝐾 : 𝐵 ⟶ { 𝑧 } ↔ 𝐾 = ( 𝐵 × { 𝑧 } ) ) |
| 15 | xpeq2 | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐵 × 𝐶 ) = ( 𝐵 × { 𝑧 } ) ) | |
| 16 | 7 15 | eqtrid | ⊢ ( 𝐶 = { 𝑧 } → 𝐹 = ( 𝐵 × { 𝑧 } ) ) |
| 17 | 16 | eqeq2d | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 = 𝐹 ↔ 𝐾 = ( 𝐵 × { 𝑧 } ) ) ) |
| 18 | 14 17 | bitr4id | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ { 𝑧 } ↔ 𝐾 = 𝐹 ) ) |
| 19 | 12 18 | bitrd | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑧 𝐶 = { 𝑧 } → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 21 | 11 20 | syl | ⊢ ( 𝜑 → ( 𝐾 : 𝐵 ⟶ 𝐶 ↔ 𝐾 = 𝐹 ) ) |
| 22 | 21 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐾 : 𝐵 ⟶ 𝐶 ) → 𝐾 = 𝐹 ) |
| 23 | 10 22 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ) → 𝐾 = 𝐹 ) |
| 24 | 2 | termcthind | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) |
| 25 | 13 | fconst | ⊢ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } |
| 26 | 16 | feq1d | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐹 : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ 𝐶 ) ) |
| 27 | feq3 | ⊢ ( 𝐶 = { 𝑧 } → ( ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } ) ) | |
| 28 | 26 27 | bitrd | ⊢ ( 𝐶 = { 𝑧 } → ( 𝐹 : 𝐵 ⟶ 𝐶 ↔ ( 𝐵 × { 𝑧 } ) : 𝐵 ⟶ { 𝑧 } ) ) |
| 29 | 25 28 | mpbiri | ⊢ ( 𝐶 = { 𝑧 } → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 30 | 29 | exlimiv | ⊢ ( ∃ 𝑧 𝐶 = { 𝑧 } → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 31 | 11 30 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 32 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐸 ∈ TermCat ) |
| 33 | 31 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 34 | 33 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐶 ) |
| 35 | 31 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 36 | 35 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝐶 ) |
| 37 | 32 4 34 36 6 | termchomn0 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ¬ ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ ) |
| 38 | 37 | pm2.21d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 39 | 38 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 40 | 3 4 5 6 1 24 31 8 39 | functhinc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐿 ↔ 𝐿 = 𝐺 ) ) |
| 41 | 23 40 | functermclem | ⊢ ( 𝜑 → ( 𝐾 ( 𝐷 Func 𝐸 ) 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |