This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functermc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| functermc.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | ||
| functermc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| functermc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| functermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| functermc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| functermc.f | ⊢ 𝐹 = ( 𝐵 × 𝐶 ) | ||
| functermc.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| Assertion | functermc2 | ⊢ ( 𝜑 → ( 𝐷 Func 𝐸 ) = { 〈 𝐹 , 𝐺 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 2 | functermc.e | ⊢ ( 𝜑 → 𝐸 ∈ TermCat ) | |
| 3 | functermc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | functermc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 5 | functermc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 6 | functermc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 7 | functermc.f | ⊢ 𝐹 = ( 𝐵 × 𝐶 ) | |
| 8 | functermc.g | ⊢ 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 9 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 10 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 4 | fvexi | ⊢ 𝐶 ∈ V |
| 12 | 10 11 | xpex | ⊢ ( 𝐵 × 𝐶 ) ∈ V |
| 13 | 7 12 | eqeltri | ⊢ 𝐹 ∈ V |
| 14 | 10 10 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
| 15 | 8 14 | eqeltri | ⊢ 𝐺 ∈ V |
| 16 | 13 15 | relsnop | ⊢ Rel { 〈 𝐹 , 𝐺 〉 } |
| 17 | 1 2 3 4 5 6 7 8 | functermc | ⊢ ( 𝜑 → ( 𝑧 ( 𝐷 Func 𝐸 ) 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) ) |
| 18 | brsnop | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) ) | |
| 19 | 13 15 18 | mp2an | ⊢ ( 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ↔ ( 𝑧 = 𝐹 ∧ 𝑤 = 𝐺 ) ) |
| 20 | 17 19 | bitr4di | ⊢ ( 𝜑 → ( 𝑧 ( 𝐷 Func 𝐸 ) 𝑤 ↔ 𝑧 { 〈 𝐹 , 𝐺 〉 } 𝑤 ) ) |
| 21 | 9 16 20 | eqbrrdiv | ⊢ ( 𝜑 → ( 𝐷 Func 𝐸 ) = { 〈 𝐹 , 𝐺 〉 } ) |