This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functermc.d | |- ( ph -> D e. Cat ) |
|
| functermc.e | |- ( ph -> E e. TermCat ) |
||
| functermc.b | |- B = ( Base ` D ) |
||
| functermc.c | |- C = ( Base ` E ) |
||
| functermc.h | |- H = ( Hom ` D ) |
||
| functermc.j | |- J = ( Hom ` E ) |
||
| functermc.f | |- F = ( B X. C ) |
||
| functermc.g | |- G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
||
| Assertion | functermc | |- ( ph -> ( K ( D Func E ) L <-> ( K = F /\ L = G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermc.d | |- ( ph -> D e. Cat ) |
|
| 2 | functermc.e | |- ( ph -> E e. TermCat ) |
|
| 3 | functermc.b | |- B = ( Base ` D ) |
|
| 4 | functermc.c | |- C = ( Base ` E ) |
|
| 5 | functermc.h | |- H = ( Hom ` D ) |
|
| 6 | functermc.j | |- J = ( Hom ` E ) |
|
| 7 | functermc.f | |- F = ( B X. C ) |
|
| 8 | functermc.g | |- G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
|
| 9 | simpr | |- ( ( ph /\ K ( D Func E ) L ) -> K ( D Func E ) L ) |
|
| 10 | 3 4 9 | funcf1 | |- ( ( ph /\ K ( D Func E ) L ) -> K : B --> C ) |
| 11 | 2 4 | termcbas | |- ( ph -> E. z C = { z } ) |
| 12 | feq3 | |- ( C = { z } -> ( K : B --> C <-> K : B --> { z } ) ) |
|
| 13 | vex | |- z e. _V |
|
| 14 | 13 | fconst2 | |- ( K : B --> { z } <-> K = ( B X. { z } ) ) |
| 15 | xpeq2 | |- ( C = { z } -> ( B X. C ) = ( B X. { z } ) ) |
|
| 16 | 7 15 | eqtrid | |- ( C = { z } -> F = ( B X. { z } ) ) |
| 17 | 16 | eqeq2d | |- ( C = { z } -> ( K = F <-> K = ( B X. { z } ) ) ) |
| 18 | 14 17 | bitr4id | |- ( C = { z } -> ( K : B --> { z } <-> K = F ) ) |
| 19 | 12 18 | bitrd | |- ( C = { z } -> ( K : B --> C <-> K = F ) ) |
| 20 | 19 | exlimiv | |- ( E. z C = { z } -> ( K : B --> C <-> K = F ) ) |
| 21 | 11 20 | syl | |- ( ph -> ( K : B --> C <-> K = F ) ) |
| 22 | 21 | biimpa | |- ( ( ph /\ K : B --> C ) -> K = F ) |
| 23 | 10 22 | syldan | |- ( ( ph /\ K ( D Func E ) L ) -> K = F ) |
| 24 | 2 | termcthind | |- ( ph -> E e. ThinCat ) |
| 25 | 13 | fconst | |- ( B X. { z } ) : B --> { z } |
| 26 | 16 | feq1d | |- ( C = { z } -> ( F : B --> C <-> ( B X. { z } ) : B --> C ) ) |
| 27 | feq3 | |- ( C = { z } -> ( ( B X. { z } ) : B --> C <-> ( B X. { z } ) : B --> { z } ) ) |
|
| 28 | 26 27 | bitrd | |- ( C = { z } -> ( F : B --> C <-> ( B X. { z } ) : B --> { z } ) ) |
| 29 | 25 28 | mpbiri | |- ( C = { z } -> F : B --> C ) |
| 30 | 29 | exlimiv | |- ( E. z C = { z } -> F : B --> C ) |
| 31 | 11 30 | syl | |- ( ph -> F : B --> C ) |
| 32 | 2 | adantr | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> E e. TermCat ) |
| 33 | 31 | ffvelcdmda | |- ( ( ph /\ z e. B ) -> ( F ` z ) e. C ) |
| 34 | 33 | adantrr | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( F ` z ) e. C ) |
| 35 | 31 | ffvelcdmda | |- ( ( ph /\ w e. B ) -> ( F ` w ) e. C ) |
| 36 | 35 | adantrl | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( F ` w ) e. C ) |
| 37 | 32 4 34 36 6 | termchomn0 | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> -. ( ( F ` z ) J ( F ` w ) ) = (/) ) |
| 38 | 37 | pm2.21d | |- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 39 | 38 | ralrimivva | |- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
| 40 | 3 4 5 6 1 24 31 8 39 | functhinc | |- ( ph -> ( F ( D Func E ) L <-> L = G ) ) |
| 41 | 23 40 | functermclem | |- ( ph -> ( K ( D Func E ) L <-> ( K = F /\ L = G ) ) ) |