This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for functermc . (Contributed by Zhi Wang, 17-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functermclem.1 | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐾 = 𝐹 ) | |
| functermclem.2 | ⊢ ( 𝜑 → ( 𝐹 𝑅 𝐿 ↔ 𝐿 = 𝐺 ) ) | ||
| Assertion | functermclem | ⊢ ( 𝜑 → ( 𝐾 𝑅 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermclem.1 | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐾 = 𝐹 ) | |
| 2 | functermclem.2 | ⊢ ( 𝜑 → ( 𝐹 𝑅 𝐿 ↔ 𝐿 = 𝐺 ) ) | |
| 3 | simpr | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐾 𝑅 𝐿 ) | |
| 4 | 1 3 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐹 𝑅 𝐿 ) |
| 5 | 2 | biimpa | ⊢ ( ( 𝜑 ∧ 𝐹 𝑅 𝐿 ) → 𝐿 = 𝐺 ) |
| 6 | 4 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → 𝐿 = 𝐺 ) |
| 7 | 1 6 | jca | ⊢ ( ( 𝜑 ∧ 𝐾 𝑅 𝐿 ) → ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) |
| 8 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐾 = 𝐹 ) | |
| 9 | 2 | biimpar | ⊢ ( ( 𝜑 ∧ 𝐿 = 𝐺 ) → 𝐹 𝑅 𝐿 ) |
| 10 | 9 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐹 𝑅 𝐿 ) |
| 11 | 8 10 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) → 𝐾 𝑅 𝐿 ) |
| 12 | 7 11 | impbida | ⊢ ( 𝜑 → ( 𝐾 𝑅 𝐿 ↔ ( 𝐾 = 𝐹 ∧ 𝐿 = 𝐺 ) ) ) |