This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| Assertion | istermc | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istermc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fveqeq2 | ⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) ) | |
| 3 | 2 | exbidv | ⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) ) |
| 4 | 1 | eqeq1i | ⊢ ( 𝐵 = { 𝑥 } ↔ ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 5 | 4 | exbii | ⊢ ( ∃ 𝑥 𝐵 = { 𝑥 } ↔ ∃ 𝑥 ( Base ‘ 𝐶 ) = { 𝑥 } ) |
| 6 | 3 5 | bitr4di | ⊢ ( 𝑐 = 𝐶 → ( ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |
| 7 | df-termc | ⊢ TermCat = { 𝑐 ∈ ThinCat ∣ ∃ 𝑥 ( Base ‘ 𝑐 ) = { 𝑥 } } | |
| 8 | 6 7 | elrab2 | ⊢ ( 𝐶 ∈ TermCat ↔ ( 𝐶 ∈ ThinCat ∧ ∃ 𝑥 𝐵 = { 𝑥 } ) ) |