This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| funcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐷 ) | ||
| funcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝐸 ) | ||
| funcsect.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| funcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| funcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| funcsect.m | ⊢ ( 𝜑 → 𝑀 ( 𝑋 𝑆 𝑌 ) 𝑁 ) | ||
| Assertion | funcsect | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝑇 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | funcsect.s | ⊢ 𝑆 = ( Sect ‘ 𝐷 ) | |
| 3 | funcsect.t | ⊢ 𝑇 = ( Sect ‘ 𝐸 ) | |
| 4 | funcsect.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 5 | funcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | funcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | funcsect.m | ⊢ ( 𝜑 → 𝑀 ( 𝑋 𝑆 𝑌 ) 𝑁 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 11 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 12 | 4 11 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 16 | 1 8 9 10 2 15 5 6 | issect | ⊢ ( 𝜑 → ( 𝑀 ( 𝑋 𝑆 𝑌 ) 𝑁 ↔ ( 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ∧ 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑋 ) ∧ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ) ) |
| 17 | 7 16 | mpbid | ⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ∧ 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑋 ) ∧ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ) |
| 18 | 17 | simp3d | ⊢ ( 𝜑 → ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑀 ) = ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑀 ) ) = ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) ) |
| 20 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 21 | 17 | simp1d | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ) |
| 22 | 17 | simp2d | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑌 ( Hom ‘ 𝐷 ) 𝑋 ) ) |
| 23 | 1 8 9 20 4 5 6 5 21 22 | funcco | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( 𝑁 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐷 ) 𝑋 ) 𝑀 ) ) = ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) ) |
| 24 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 25 | 1 10 24 4 5 | funcid | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 26 | 19 23 25 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 27 | eqid | ⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) | |
| 28 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 29 | 14 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 30 | 1 27 4 | funcf1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐸 ) ) |
| 31 | 30 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐸 ) ) |
| 32 | 30 6 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝐸 ) ) |
| 33 | 1 8 28 4 5 6 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐷 ) 𝑌 ) ⟶ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 34 | 33 21 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ∈ ( ( 𝐹 ‘ 𝑋 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 35 | 1 8 28 4 6 5 | funcf2 | ⊢ ( 𝜑 → ( 𝑌 𝐺 𝑋 ) : ( 𝑌 ( Hom ‘ 𝐷 ) 𝑋 ) ⟶ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 36 | 35 22 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Hom ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 | 27 28 20 24 3 29 31 32 34 36 | issect2 | ⊢ ( 𝜑 → ( ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝑇 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ↔ ( ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑋 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 38 | 26 37 | mpbird | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑀 ) ( ( 𝐹 ‘ 𝑋 ) 𝑇 ( 𝐹 ‘ 𝑌 ) ) ( ( 𝑌 𝐺 𝑋 ) ‘ 𝑁 ) ) |