This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsect.b | |- B = ( Base ` D ) |
|
| funcsect.s | |- S = ( Sect ` D ) |
||
| funcsect.t | |- T = ( Sect ` E ) |
||
| funcsect.f | |- ( ph -> F ( D Func E ) G ) |
||
| funcsect.x | |- ( ph -> X e. B ) |
||
| funcsect.y | |- ( ph -> Y e. B ) |
||
| funcsect.m | |- ( ph -> M ( X S Y ) N ) |
||
| Assertion | funcsect | |- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsect.b | |- B = ( Base ` D ) |
|
| 2 | funcsect.s | |- S = ( Sect ` D ) |
|
| 3 | funcsect.t | |- T = ( Sect ` E ) |
|
| 4 | funcsect.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | funcsect.x | |- ( ph -> X e. B ) |
|
| 6 | funcsect.y | |- ( ph -> Y e. B ) |
|
| 7 | funcsect.m | |- ( ph -> M ( X S Y ) N ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 10 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 11 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 12 | 4 11 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 13 | funcrcl | |- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
|
| 14 | 12 13 | syl | |- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
| 15 | 14 | simpld | |- ( ph -> D e. Cat ) |
| 16 | 1 8 9 10 2 15 5 6 | issect | |- ( ph -> ( M ( X S Y ) N <-> ( M e. ( X ( Hom ` D ) Y ) /\ N e. ( Y ( Hom ` D ) X ) /\ ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) ) ) |
| 17 | 7 16 | mpbid | |- ( ph -> ( M e. ( X ( Hom ` D ) Y ) /\ N e. ( Y ( Hom ` D ) X ) /\ ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) ) |
| 18 | 17 | simp3d | |- ( ph -> ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` D ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ) |
| 20 | eqid | |- ( comp ` E ) = ( comp ` E ) |
|
| 21 | 17 | simp1d | |- ( ph -> M e. ( X ( Hom ` D ) Y ) ) |
| 22 | 17 | simp2d | |- ( ph -> N e. ( Y ( Hom ` D ) X ) ) |
| 23 | 1 8 9 20 4 5 6 5 21 22 | funcco | |- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` D ) X ) M ) ) = ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
| 24 | eqid | |- ( Id ` E ) = ( Id ` E ) |
|
| 25 | 1 10 24 4 5 | funcid | |- ( ph -> ( ( X G X ) ` ( ( Id ` D ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
| 26 | 19 23 25 | 3eqtr3d | |- ( ph -> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
| 27 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
| 28 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 29 | 14 | simprd | |- ( ph -> E e. Cat ) |
| 30 | 1 27 4 | funcf1 | |- ( ph -> F : B --> ( Base ` E ) ) |
| 31 | 30 5 | ffvelcdmd | |- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
| 32 | 30 6 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
| 33 | 1 8 28 4 5 6 | funcf2 | |- ( ph -> ( X G Y ) : ( X ( Hom ` D ) Y ) --> ( ( F ` X ) ( Hom ` E ) ( F ` Y ) ) ) |
| 34 | 33 21 | ffvelcdmd | |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) ( Hom ` E ) ( F ` Y ) ) ) |
| 35 | 1 8 28 4 6 5 | funcf2 | |- ( ph -> ( Y G X ) : ( Y ( Hom ` D ) X ) --> ( ( F ` Y ) ( Hom ` E ) ( F ` X ) ) ) |
| 36 | 35 22 | ffvelcdmd | |- ( ph -> ( ( Y G X ) ` N ) e. ( ( F ` Y ) ( Hom ` E ) ( F ` X ) ) ) |
| 37 | 27 28 20 24 3 29 31 32 34 36 | issect2 | |- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) ) |
| 38 | 26 37 | mpbird | |- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) |